論文の概要: A Unifying Family of Data-Adaptive Partitioning Algorithms
- arxiv url: http://arxiv.org/abs/2412.16713v1
- Date: Sat, 21 Dec 2024 17:54:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:55:36.407553
- Title: A Unifying Family of Data-Adaptive Partitioning Algorithms
- Title(参考訳): データ適応分割アルゴリズムの一家系
- Authors: Guy B. Oldaker IV, Maria Emelianenko,
- Abstract要約: 本稿では、いくつかのよく知られた手法を統一するデータ適応分割アルゴリズムのファミリーを示す。
アルゴリズムは使いやすく、解釈しやすく、大規模で高次元の問題によく対応している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Clustering algorithms remain valuable tools for grouping and summarizing the most important aspects of data. Example areas where this is the case include image segmentation, dimension reduction, signals analysis, model order reduction, numerical analysis, and others. As a consequence, many clustering approaches have been developed to satisfy the unique needs of each particular field. In this article, we present a family of data-adaptive partitioning algorithms that unifies several well-known methods (e.g., k-means and k-subspaces). Indexed by a single parameter and employing a common minimization strategy, the algorithms are easy to use and interpret, and scale well to large, high-dimensional problems. In addition, we develop an adaptive mechanism that (a) exhibits skill at automatically uncovering data structures and problem parameters without any expert knowledge and, (b) can be used to augment other existing methods. By demonstrating the performance of our methods on examples from disparate fields including subspace clustering, model order reduction, and matrix approximation, we hope to highlight their versatility and potential for extending the boundaries of existing scientific domains. We believe our family's parametrized structure represents a synergism of algorithms that will foster new developments and directions, not least within the data science community.
- Abstract(参考訳): クラスタリングアルゴリズムは、データの最も重要な側面をグループ化し、要約するための貴重なツールである。
この場合の例としては、画像分割、次元縮小、信号解析、モデルオーダー削減、数値解析などがある。
その結果、各分野のユニークなニーズを満たすために多くのクラスタリング手法が開発されている。
本稿では、よく知られた方法(例えば、k-means、k-subspaces)を統一するデータ適応分割アルゴリズムのファミリーを示す。
単一のパラメータでインデックス付けされ、共通の最小化戦略を採用することにより、アルゴリズムは使いやすく、解釈しやすく、大規模で高次元の問題によく対応できる。
さらに,適応的な機構を開発する。
(a)データ構造や問題パラメータを専門知識なしで自動的に発見する技術を示し、かつ、
(b)は、他の既存のメソッドの拡張に使用することができる。
サブスペースクラスタリング,モデルオーダー削減,行列近似など,さまざまな分野の分野における手法の性能を実証することにより,既存の科学領域の境界を拡大するための汎用性と可能性を強調したい。
私たちは、家族のパラメトリケーション構造は、特にデータサイエンスコミュニティの中で、新しい発展と方向性を育むアルゴリズムのシナジズムを表していると信じています。
関連論文リスト
- Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
大きな言語モデル(LLM)は、非常に強力な能力を示す。
成功するための重要な要因の1つは、LLMの出力を人間の好みに合わせることである。
選好学習のすべての戦略を、モデル、データ、フィードバック、アルゴリズムの4つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-09-04T15:11:55Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
本稿では,コミュニケーション効率に量子化を組み込んだ新しい階層型フェデレーション学習アルゴリズムを提案する。
最適性ギャップと収束率を評価するための包括的な分析フレームワークを提供する。
この結果から,本アルゴリズムはパラメータの範囲で常に高い学習精度を達成できることが判明した。
論文 参考訳(メタデータ) (2024-03-03T15:40:24Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Gauge-optimal approximate learning for small data classification
problems [0.0]
小さなデータ学習問題は、応答変数の観測量が限られたことと大きな特徴空間次元との相違によって特徴づけられる。
本稿では,Gauge-Optimal Approximate Learning (GOAL)アルゴリズムを提案する。
GOALは、合成データと、気候科学やバイオインフォマティクスといった現実世界の応用に挑戦する、最先端の機械学習(ML)ツールと比較されている。
論文 参考訳(メタデータ) (2023-10-29T16:46:05Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Geometry of EM and related iterative algorithms [8.228889210180268]
期待-最大化(EM)アルゴリズムは、統計的推論の方法論として長年使われてきた単純なメタアルゴリズムである。
本稿では,EMアルゴリズムの情報幾何学的定式化である$em$アルゴリズムとその拡張と様々な問題への応用について紹介する。
論文 参考訳(メタデータ) (2022-09-03T00:23:23Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - ExClus: Explainable Clustering on Low-dimensional Data Representations [9.496898312608307]
次元の減少とクラスタリング技術は複雑なデータセットの分析に頻繁に使用されるが、それらの結果は容易には解釈できないことが多い。
本研究では, 直接解釈できない散乱プロット上で, クラスタ構造を解釈する際のユーザ支援について検討する。
本稿では,解釈可能なクラスタリングを自動的に計算する新しい手法を提案し,その説明は元の高次元空間にあり,クラスタリングは低次元射影においてコヒーレントである。
論文 参考訳(メタデータ) (2021-11-04T21:24:01Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - A Forward Backward Greedy approach for Sparse Multiscale Learning [0.0]
本稿では,カーネルが重み付きマルチスケール構造を持つRKHS(Reproduction Kernel Hilbert space)を提案する。
この空間における近似を生成するために、多スケール構造を持つ基底関数の集合をゆるやかに構成できる実用的なフォワードバックワードアルゴリズムを提供する。
我々は,様々なシミュレーションと実データ集合を用いて,アプローチの性能を解析する。
論文 参考訳(メタデータ) (2021-02-14T04:22:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。