論文の概要: ExClus: Explainable Clustering on Low-dimensional Data Representations
- arxiv url: http://arxiv.org/abs/2111.03168v1
- Date: Thu, 4 Nov 2021 21:24:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-08 15:49:19.952885
- Title: ExClus: Explainable Clustering on Low-dimensional Data Representations
- Title(参考訳): ExClus: 低次元データ表現による説明可能なクラスタリング
- Authors: Xander Vankwikelberge, Bo Kang, Edith Heiter, Jefrey Lijffijt
- Abstract要約: 次元の減少とクラスタリング技術は複雑なデータセットの分析に頻繁に使用されるが、それらの結果は容易には解釈できないことが多い。
本研究では, 直接解釈できない散乱プロット上で, クラスタ構造を解釈する際のユーザ支援について検討する。
本稿では,解釈可能なクラスタリングを自動的に計算する新しい手法を提案し,その説明は元の高次元空間にあり,クラスタリングは低次元射影においてコヒーレントである。
- 参考スコア(独自算出の注目度): 9.496898312608307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimensionality reduction and clustering techniques are frequently used to
analyze complex data sets, but their results are often not easy to interpret.
We consider how to support users in interpreting apparent cluster structure on
scatter plots where the axes are not directly interpretable, such as when the
data is projected onto a two-dimensional space using a dimensionality-reduction
method. Specifically, we propose a new method to compute an interpretable
clustering automatically, where the explanation is in the original
high-dimensional space and the clustering is coherent in the low-dimensional
projection. It provides a tunable balance between the complexity and the amount
of information provided, through the use of information theory. We study the
computational complexity of this problem and introduce restrictions on the
search space of solutions to arrive at an efficient, tunable, greedy
optimization algorithm. This algorithm is furthermore implemented in an
interactive tool called ExClus. Experiments on several data sets highlight that
ExClus can provide informative and easy-to-understand patterns, and they expose
where the algorithm is efficient and where there is room for improvement
considering tunability and scalability.
- Abstract(参考訳): 次元の減少とクラスタリング技術は複雑なデータセットの分析に頻繁に使用されるが、それらの結果は容易に解釈できないことが多い。
本研究では,データを二次元空間に投影する場合など,軸が直接解釈できない散乱プロット上での明らかなクラスター構造を解釈する上でのユーザ支援について検討する。
具体的には,元々の高次元空間に説明があり,低次元射影においてクラスタリングが一貫性を持つような,解釈可能なクラスタリングを自動計算する新しい手法を提案する。
情報理論を用いることで、複雑さと提供される情報量の間の調整可能なバランスを提供する。
本研究では,この問題の計算量について検討し,効率的で可変で欲望のある最適化アルゴリズムに到達するための解の探索空間の制約を導入する。
このアルゴリズムはさらにExClusと呼ばれるインタラクティブなツールで実装されている。
複数のデータセットの実験では、ExClusが情報的で分かりやすいパターンを提供し、アルゴリズムが効率的で、チューニング性とスケーラビリティを考慮して改善の余地があることが強調されている。
関連論文リスト
- Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds [2.0649432688817444]
本研究では,高次元データの回帰解析に挑戦する拡散スペクトルアルゴリズムを提案する。
本手法では,熱カーネルの局所的推定特性を用いて,この障害を克服するための適応型データ駆動型アプローチを提案する。
我々のアルゴリズムは完全にデータ駆動方式で動作し、データ固有の多様体構造内で直接動作する。
論文 参考訳(メタデータ) (2024-10-18T15:29:04Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Learning A Disentangling Representation For PU Learning [18.94726971543125]
本稿では、ラベルのないデータを2つのクラスタに投影するロス関数を用いて、ニューラルネットワークに基づくデータ表現を学習することを提案する。
提案手法の性能向上を実証する PU データのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2023-10-05T18:33:32Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
本稿では t-SNE に基づく新しいグラフベース次元削減手法 LaptSNE を提案する。
具体的には、LaptSNEはグラフラプラシアンの固有値情報を利用して、低次元埋め込みにおけるポテンシャルクラスタを縮小する。
ラプラシアン合成目的による最適化を考える際には、より広い関心を持つであろう勾配を解析的に計算する方法を示す。
論文 参考訳(メタデータ) (2022-07-25T14:10:24Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
カットベースの有向グラフ(グラフ)クラスタリングは、しばしばクラスタ内あるいはクラスタ間の疎結合を見つけることに焦点を当てる。
フローベースのクラスタリングでは、クラスタ間のエッジは一方向を向く傾向にあり、マイグレーションデータ、フードウェブ、トレーディングデータに見出されている。
論文 参考訳(メタデータ) (2022-03-02T20:07:04Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Learnable Subspace Clustering [76.2352740039615]
本研究では,大規模サブスペースクラスタリング問題を効率的に解くために,学習可能なサブスペースクラスタリングパラダイムを開発する。
鍵となる考え方は、高次元部分空間を下層の低次元部分空間に分割するパラメトリック関数を学ぶことである。
我々の知る限り、本論文は、サブスペースクラスタリング手法の中で、数百万のデータポイントを効率的にクラスタ化する最初の試みである。
論文 参考訳(メタデータ) (2020-04-09T12:53:28Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
さらに、数値データセットの列に定数値を持つ最大二クラスタの効率的で完全で正しい非冗長列挙を実現できる二クラスタリングアルゴリズムであるRIn-Close_CVCを拡張した。
改良されたアルゴリズムはRIn-Close_CVC3と呼ばれ、RIn-Close_CVCの魅力的な特性を保ちます。
論文 参考訳(メタデータ) (2020-03-07T14:54:26Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
直感的で実装が簡単で,最先端のアルゴリズムと競合する,スパースk平均クラスタリングのための新しいフレームワークを提案する。
本手法は,属性のサブセットのクラスタリングや部分的に観測されたデータ設定など,タスク固有のアルゴリズムに容易に一般化できる。
論文 参考訳(メタデータ) (2020-02-20T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。