論文の概要: Solving Inverse Problems via Diffusion Optimal Control
- arxiv url: http://arxiv.org/abs/2412.16748v1
- Date: Sat, 21 Dec 2024 19:47:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:57:11.757191
- Title: Solving Inverse Problems via Diffusion Optimal Control
- Title(参考訳): 拡散最適制御による逆問題の解法
- Authors: Henry Li, Marcus Pereira,
- Abstract要約: 反復線形擬似レギュレータ (iLQR) アルゴリズムにインスパイアされた拡散型最適制御器を導出する。
アルゴリズムの特別な場合として, 理想化後サンプリング方程式を復元できることが示される。
次に,ニューラル逆問題解法の選択に対して提案手法を評価し,逆問題を用いた画像再構成における新たなベースラインを確立する。
- 参考スコア(独自算出の注目度): 3.0079490585515343
- License:
- Abstract: Existing approaches to diffusion-based inverse problem solvers frame the signal recovery task as a probabilistic sampling episode, where the solution is drawn from the desired posterior distribution. This framework suffers from several critical drawbacks, including the intractability of the conditional likelihood function, strict dependence on the score network approximation, and poor $\mathbf{x}_0$ prediction quality. We demonstrate that these limitations can be sidestepped by reframing the generative process as a discrete optimal control episode. We derive a diffusion-based optimal controller inspired by the iterative Linear Quadratic Regulator (iLQR) algorithm. This framework is fully general and able to handle any differentiable forward measurement operator, including super-resolution, inpainting, Gaussian deblurring, nonlinear deblurring, and even highly nonlinear neural classifiers. Furthermore, we show that the idealized posterior sampling equation can be recovered as a special case of our algorithm. We then evaluate our method against a selection of neural inverse problem solvers, and establish a new baseline in image reconstruction with inverse problems.
- Abstract(参考訳): 拡散に基づく逆問題解法への既存のアプローチは、所望の後方分布から解を引き出す確率的サンプリングエピソードとして信号回復タスクをフレーム化している。
このフレームワークは、条件付き可能性関数の抽出可能性、スコアネットワーク近似への厳格な依存、$\mathbf{x}_0$予測品質の低下など、いくつかの重大な欠点に悩まされている。
これらの制限は、生成過程を離散的な最適制御エピソードとして再定義することで、副次的に適用可能であることを実証する。
反復線形擬似レギュレータ (iLQR) アルゴリズムにインスパイアされた拡散型最適制御器を導出する。
このフレームワークは完全に汎用的であり、超解像、塗布、ガウスの変色、非線形の変色、さらには高非線形のニューラル分類器など、あらゆる異なる前方測定演算子を扱うことができる。
さらに, アルゴリズムの特別な場合として, 理想化後サンプリング方程式を復元できることが示唆された。
次に,ニューラル逆問題解法の選択に対して提案手法を評価し,逆問題を用いた画像再構成における新たなベースラインを確立する。
関連論文リスト
- Score-Based Variational Inference for Inverse Problems [19.848238197979157]
後部平均値が好ましいアプリケーションでは、時間を要する後部から複数のサンプルを生成する必要がある。
後部平均を直接対象とするフレームワークであるリバース平均伝搬(RMP)を確立する。
スコア関数を用いて逆KL分散を自然な勾配降下で最適化し,各逆ステップで平均を伝搬するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-08T02:55:16Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
本稿では,事前学習した潜在拡散モデルを利用した線形逆問題の解法を初めて提案する。
線形モデル設定において,証明可能なサンプル回復を示すアルゴリズムを理論的に解析する。
論文 参考訳(メタデータ) (2023-07-02T17:21:30Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
我々は、後方サンプリングの近似により、雑音(非線形)逆問題に対処するために拡散解法を拡張した。
本手法は,拡散モデルが様々な計測ノイズ統計を組み込むことができることを示す。
論文 参考訳(メタデータ) (2022-09-29T11:12:27Z) - SNIPS: Solving Noisy Inverse Problems Stochastically [25.567566997688044]
本稿では,線形逆問題の後部分布からサンプルを抽出するSNIPSアルゴリズムを提案する。
我々の解はランゲヴィン力学とニュートン法からのアイデアを取り入れ、事前訓練された最小二乗誤差(MMSE)を利用する。
得られたサンプルは、与えられた測定値と鋭く、詳細で一致しており、それらの多様性は、解決される逆問題に固有の不確実性を明らかにする。
論文 参考訳(メタデータ) (2021-05-31T13:33:21Z) - Sparse Signal Reconstruction for Nonlinear Models via Piecewise Rational
Optimization [27.080837460030583]
劣化した信号を非線形歪みと限られたサンプリングレートで再構成する手法を提案する。
本手法は,不正確な適合項と罰則として定式化する。
シミュレーションの利点の観点から,この問題の活用方法を示す。
論文 参考訳(メタデータ) (2020-10-29T09:05:19Z) - Learned convex regularizers for inverse problems [3.294199808987679]
本稿では,逆問題に対する正規化器として,データ適応型入力ニューラルネットワーク(ICNN)を学習することを提案する。
パラメータ空間における単調な誤差を反復で減少させる部分次アルゴリズムの存在を実証する。
提案した凸正則化器は, 逆問題に対する最先端のデータ駆動技術に対して, 少なくとも競争力があり, 時には優位であることを示す。
論文 参考訳(メタデータ) (2020-08-06T18:58:35Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
雑音観測によるスパース信号回復問題に対する反復2次最適化ルーチンの適用について論じる。
本稿では,Median-of-Meansのような手法を用いて,対応するソリューションの信頼性を向上する方法について述べる。
論文 参考訳(メタデータ) (2020-06-11T12:31:20Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。