論文の概要: A Comparative Study on Machine Learning Models to Classify Diseases Based on Patient Behaviour and Habits
- arxiv url: http://arxiv.org/abs/2412.16768v1
- Date: Sat, 21 Dec 2024 20:46:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:03.005716
- Title: A Comparative Study on Machine Learning Models to Classify Diseases Based on Patient Behaviour and Habits
- Title(参考訳): 患者行動と習慣に基づく疾患分類のための機械学習モデルの比較研究
- Authors: Elham Musaaed, Nabil Hewahi, Abdulla Alasaadi,
- Abstract要約: 本研究は, PRFと糖尿病, ストローク, 心疾患 (HD), キドニー病 (KD) の相関について6つの教師付きML手法を用いて検討した。
PRFに基づいてHDを分類するためのMLアルゴリズムと、Diabetes、Stroke、Asthma、Skin Cancer、KDを属性として比較、評価することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In recent years, ML algorithms have been shown to be useful for predicting diseases based on health data and posed a potential application area for these algorithms such as modeling of diseases. The majority of these applications employ supervised rather than unsupervised ML algorithms. In addition, each year, the amount of data in medical science grows rapidly. Moreover, these data include clinical and Patient-Related Factors (PRF), such as height, weight, age, other physical characteristics, blood sugar, lipids, insulin, etc., all of which will change continually over time. Analysis of historical data can help identify disease risk factors and their interactions, which is useful for disease diagnosis and prediction. This wealth of valuable information in these data will help doctors diagnose accurately and people can become more aware of the risk factors and key indicators to act proactively. The purpose of this study is to use six supervised ML approaches to fill this gap by conducting a comprehensive experiment to investigate the correlation between PRF and Diabetes, Stroke, Heart Disease (HD), and Kidney Disease (KD). Moreover, it will investigate the link between Diabetes, Stroke, and KD and PRF with HD. Further, the research aims to compare and evaluate various ML algorithms for classifying diseases based on the PRF. Additionally, it aims to compare and evaluate ML algorithms for classifying HD based on PRF as well as Diabetes, Stroke, Asthma, Skin Cancer, and KD as attributes. Lastly, HD predictions will be provided through a Web-based application on the most accurate classifier, which allows the users to input their values and predict the output.
- Abstract(参考訳): 近年、MLアルゴリズムは、健康データに基づく疾患の予測に有用であることが示され、疾患のモデリングなど、これらのアルゴリズムの潜在的な応用分野が提示されている。
これらのアプリケーションのほとんどは、教師なしのMLアルゴリズムではなく、教師なしのMLアルゴリズムを使用している。
また、毎年、医学におけるデータの量は急増している。
さらに、これらのデータには、身長、体重、年齢、その他の身体的特徴、血糖値、脂質、インスリン値など、臨床および患者関連因子(PRF)が含まれる。
歴史的データの解析は、疾患の診断や予測に役立つ病気の危険因子とその相互作用を特定するのに役立つ。
こうしたデータに蓄積された貴重な情報は、医師が正確な診断を行うのに役立つ。
本研究の目的は, PRFと糖尿病, ストローク, 心臓病 (HD) とキドニー病 (KD) の相関関係を総合的に検討することにより, このギャップを埋めるために6つの教師付きMLアプローチを使用することである。
さらに, 糖尿病, ストローク, KD と PRF と HD との関連について検討する。
さらに,本研究の目的は,PRFに基づく疾患分類のためのMLアルゴリズムの比較と評価である。
さらに、PRFに基づいてHDを分類するためのMLアルゴリズムと、糖尿病、ストローク、喘息、皮膚がん、KDを属性として比較、評価することを目指している。
最後に、HD予測は最も正確な分類器上のWebベースのアプリケーションを通して提供され、ユーザが自分の値を入力して出力を予測することができる。
関連論文リスト
- Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.26217304977339473]
慢性腎臓病(英: chronic Kidney Disease、CKD)は、腎臓の構造と機能に大きな影響を及ぼし、最終的に腎不全を引き起こす異種性疾患である。
本研究の目的は、アンサンブル学習と説明可能なAIを用いて、早期予後とCKDの検出のための支配的特徴、特徴スコア、および値の可視化である。
論文 参考訳(メタデータ) (2024-06-10T18:46:14Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
我々は,データのバランスが不均衡でサンプルサイズが小さい場合に,より正確な予測を行うために,データのバランスと拡張のための方法論を開発する。
実験の結果,提案手法の平均精度は95.36であり,ランダムフォレスト(RF),決定木(DT),サポートベクターマシン(SVM),ロジスティック回帰(LR),人工ニューラルネットワーク(ANN)よりも高かった。
論文 参考訳(メタデータ) (2023-08-29T14:33:38Z) - Adapting Machine Learning Diagnostic Models to New Populations Using a Small Amount of Data: Results from Clinical Neuroscience [21.420302408947194]
我々は、ソースグループからのデータを最適に組み合わせ、ターゲットグループで予測する、重み付き経験的リスク最小化手法を開発した。
本研究では,アルツハイマー病の診断と脳年齢推定のためのMLモデルを構築するため,20の神経画像研究から15,363人のマルチソースデータに適用した。
論文 参考訳(メタデータ) (2023-08-06T18:05:39Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
論文 参考訳(メタデータ) (2021-08-30T16:42:27Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Interpretable Disease Prediction based on Reinforcement Path Reasoning
over Knowledge Graphs [15.339137501579087]
疾患予測タスクを知識グラフ(KG)に沿ってランダムウォークとして定式化した。
我々は, 病因と危険因子との関係を, 検証された医療知識に基づいて記録するKGを構築した。
対象物によって生成された軌跡は、所定の患者の解釈可能な疾患進行経路を表す。
論文 参考訳(メタデータ) (2020-10-16T10:46:28Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。