論文の概要: Improving Pareto Set Learning for Expensive Multi-objective Optimization via Stein Variational Hypernetworks
- arxiv url: http://arxiv.org/abs/2412.17312v1
- Date: Mon, 23 Dec 2024 06:05:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:58.239465
- Title: Improving Pareto Set Learning for Expensive Multi-objective Optimization via Stein Variational Hypernetworks
- Title(参考訳): 定常変分ハイパーネットによる多目的多目的最適化のためのパレートセット学習の改善
- Authors: Minh-Duc Nguyen, Phuong Mai Dinh, Quang-Huy Nguyen, Long P. Hoang, Dung D. Le,
- Abstract要約: 重大多目的最適化問題(EMOP)は、目的関数の評価にコストがかかる実世界のシナリオでは一般的である。
本稿では,Stein Variational Gradient Descent (SVGD) を Hypernetworks に統合した SVH-PSL という新しい手法を提案する。
本手法は, 解空間を滑らかにするために粒子を集合的に移動させることにより, フラグメント化サロゲートモデルと擬似局所最適化の問題に対処する。
- 参考スコア(独自算出の注目度): 4.124390946636935
- License:
- Abstract: Expensive multi-objective optimization problems (EMOPs) are common in real-world scenarios where evaluating objective functions is costly and involves extensive computations or physical experiments. Current Pareto set learning methods for such problems often rely on surrogate models like Gaussian processes to approximate the objective functions. These surrogate models can become fragmented, resulting in numerous small uncertain regions between explored solutions. When using acquisition functions such as the Lower Confidence Bound (LCB), these uncertain regions can turn into pseudo-local optima, complicating the search for globally optimal solutions. To address these challenges, we propose a novel approach called SVH-PSL, which integrates Stein Variational Gradient Descent (SVGD) with Hypernetworks for efficient Pareto set learning. Our method addresses the issues of fragmented surrogate models and pseudo-local optima by collectively moving particles in a manner that smooths out the solution space. The particles interact with each other through a kernel function, which helps maintain diversity and encourages the exploration of underexplored regions. This kernel-based interaction prevents particles from clustering around pseudo-local optima and promotes convergence towards globally optimal solutions. Our approach aims to establish robust relationships between trade-off reference vectors and their corresponding true Pareto solutions, overcoming the limitations of existing methods. Through extensive experiments across both synthetic and real-world MOO benchmarks, we demonstrate that SVH-PSL significantly improves the quality of the learned Pareto set, offering a promising solution for expensive multi-objective optimization problems.
- Abstract(参考訳): 重大多目的最適化問題(EMOP)は、目的関数の評価にコストがかかり、広範囲な計算や物理実験が伴う実世界のシナリオで一般的である。
このような問題に対する現在のパレート集合学習法は、目的関数を近似するためにガウス過程のような代理モデルに依存することが多い。
これらの代理モデルは断片化され、探索された解の間の多くの小さな不確実な領域をもたらす。
LCB (Lower Confidence Bound) のような取得関数を使用すると、これらの不確実領域は擬局所最適となり、大域的最適解の探索が複雑になる。
これらの課題に対処するために, SVH-PSL という新しい手法を提案し, この手法は SVGD (Stein Variational Gradient Descent) をHypernetworks と統合し, 効率の良いPareto 集合学習を実現する。
本手法は, 解空間を滑らかにするために粒子を集合的に移動させることにより, フラグメント化サロゲートモデルと擬似局所最適化の問題に対処する。
粒子はカーネル関数を介して相互に相互作用し、多様性の維持と未探索領域の探索を促進する。
このカーネルベースの相互作用は、粒子が擬似局所最適化の周りに集束するのを防ぎ、大域的最適解への収束を促進する。
提案手法は,既存の手法の限界を克服し,トレードオフ参照ベクトルとそれに対応する真のParetoソリューションとの堅牢な関係を確立することを目的としている。
合成および実世界のMOOベンチマークの広範な実験を通じて、SVH-PSLは学習されたPareto集合の品質を大幅に改善し、高価な多目的最適化問題に対する有望な解決策を提供することを示した。
関連論文リスト
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - Preference-Optimized Pareto Set Learning for Blackbox Optimization [1.9628841617148691]
すべての目的を同時に最適化できる単一のソリューションはありません。
典型的なMOO問題では、目的間の好みを交換する最適解(パレート集合)を見つけることが目的である。
我々の定式化は、例えば微分可能なクロスエントロピー法によって解決できる二段階最適化問題につながる。
論文 参考訳(メタデータ) (2024-08-19T13:23:07Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
本稿では,統合エントロピー探索(Joint Entropy Search)と呼ばれるBOのための情報理論獲得関数を提案する。
本稿では, ハイパーボリュームとその重み付き変種の観点から, 合成および実世界の諸問題に対するこの新しいアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-06T13:19:08Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。