論文の概要: FRTP: Federating Route Search Records to Enhance Long-term Traffic Prediction
- arxiv url: http://arxiv.org/abs/2412.17373v1
- Date: Mon, 23 Dec 2024 08:14:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:04.638850
- Title: FRTP: Federating Route Search Records to Enhance Long-term Traffic Prediction
- Title(参考訳): FRTP:長期交通予測のためのルート検索記録の連携
- Authors: Hangli Ge, Xiaojie Yang, Itsuki Matsunaga, Dizhi Huang, Noboru Koshizuka,
- Abstract要約: 本稿では,様々な特徴や時間的粒度や長さを持つ生データから学習できるフェデレートアーキテクチャを提案する。
本実験は,経路探索記録のフェデレーションに焦点をあて,モデルフレームワーク内で生データを処理することから開始する。
提案モデルの精度は,多様な学習パターンとパラメータ設定を用いた評価によって実証される。
- 参考スコア(独自算出の注目度): 1.5728609542259502
- License:
- Abstract: Accurate traffic prediction, especially predicting traffic conditions several days in advance is essential for intelligent transportation systems (ITS). Such predictions enable mid- and long-term traffic optimization, which is crucial for efficient transportation planning. However, the inclusion of diverse external features, alongside the complexities of spatial relationships and temporal uncertainties, significantly increases the complexity of forecasting models. Additionally, traditional approaches have handled data preprocessing separately from the learning model, leading to inefficiencies caused by repeated trials of preprocessing and training. In this study, we propose a federated architecture capable of learning directly from raw data with varying features and time granularities or lengths. The model adopts a unified design that accommodates different feature types, time scales, and temporal periods. Our experiments focus on federating route search records and begin by processing raw data within the model framework. Unlike traditional models, this approach integrates the data federation phase into the learning process, enabling compatibility with various time frequencies and input/output configurations. The accuracy of the proposed model is demonstrated through evaluations using diverse learning patterns and parameter settings. The results show that online search log data is useful for forecasting long-term traffic, highlighting the model's adaptability and efficiency.
- Abstract(参考訳): 知的交通システム(ITS)には,交通の正確な予測,特に数日前の交通条件の予測が不可欠である。
このような予測は、効率的な交通計画に欠かせない中長期の交通最適化を可能にする。
しかし、空間的関係の複雑さや時間的不確実性の複雑さとともに、多様な外部特徴を含めることで、予測モデルの複雑さが著しく増大する。
さらに、従来のアプローチでは、学習モデルとは別々にデータ前処理を処理しており、前処理とトレーニングの繰り返し試行によって生じる非効率性につながっている。
本研究では,様々な特徴や時間的粒度,長さの異なる生データから直接学習できるフェデレートアーキテクチャを提案する。
モデルは、異なる特徴タイプ、時間スケール、時間周期に対応する統一設計を採用する。
本実験は,経路探索記録のフェデレーションに焦点をあて,モデルフレームワーク内で生データを処理することから開始する。
従来のモデルとは異なり、このアプローチはデータフェデレーションフェーズを学習プロセスに統合し、様々な時間周波数と入出力構成との互換性を可能にする。
提案モデルの精度は,多様な学習パターンとパラメータ設定を用いた評価によって実証される。
その結果,オンライン検索ログデータは長期トラフィックの予測に有用であり,モデルの適応性と効率性を強調した。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
学習に基づく手法は、合成データにもとづいても、新しい実世界のデータに基づいてGCC-PHATを著しく上回り得ることを示す。
トレーニングされたモデルであるSONNETは、リアルタイムに実行可能で、多くの実データアプリケーションのために、最初から新しいデータに取り組んでいます。
論文 参考訳(メタデータ) (2024-11-20T10:23:21Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
本稿では,時系列予測モデルTimeSieveを提案する。
提案手法では、ウェーブレット変換を用いて時系列データを前処理し、マルチスケールの特徴を効果的にキャプチャする。
本研究は,時系列予測における課題に対処するためのアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-07T15:58:12Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
本稿では,時空間交通流予測問題に対するオンラインテスト時間適応手法の最初の研究を行う。
本稿では,直列分解法(ADCSD)による適応二重補正法を提案する。
提案手法では,テストフェーズ中にトレーニングされたモデル全体を微調整する代わりに,トレーニングされたモデルの後,ライトネットワークをアタッチし,データ入力が観測されるたびに,ライトネットワークのみをテストプロセスで微調整する。
論文 参考訳(メタデータ) (2024-01-08T12:04:39Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic
Prediction [1.6449390849183363]
本稿では,トラフィック予測のための自動拡張時間同期グラフネットワーク予測であるAuto-DSTSを提案する。
具体的には,短期および長期の相関関係を捉えるための自動拡張時間時間グラフ (Auto-DSTS) モジュールを提案する。
我々のモデルは最先端の手法と比較して約10%改善できる。
論文 参考訳(メタデータ) (2022-07-22T00:50:39Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Traffic congestion anomaly detection and prediction using deep learning [6.370406399003785]
混雑予測は、タイムリーなインシデント対応を確保するため、世界中の交通管理センターにとって重要な優先事項である。
生成されたトラフィックデータの増加は、トラフィックの機械学習予測器のトレーニングに使用されているが、時間と空間の両方でトラフィックフローの相互依存性のため、これは難しい課題である。
我々のディープラーニングモデルは従来の手法より一貫して優れており、将来、異なる時点におけるトラフィックフローを予測するのに必要な履歴データの最適時間地平線の比較分析を行う。
論文 参考訳(メタデータ) (2020-06-23T08:49:46Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。