論文の概要: Surveillance Capitalism Revealed: Tracing The Hidden World Of Web Data Collection
- arxiv url: http://arxiv.org/abs/2412.17944v1
- Date: Mon, 23 Dec 2024 19:55:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:23.502400
- Title: Surveillance Capitalism Revealed: Tracing The Hidden World Of Web Data Collection
- Title(参考訳): 監視資本主義が明らかに: 隠れたWebデータ収集の世界を追跡
- Authors: Antony Seabra de Medeiros, Luiz Afonso Glatzl Junior, Sergio Lifschitz,
- Abstract要約: 本研究では,Webナビゲーションと検索における個人データ転送に着目し,サーベイランス資本主義のメカニズムを考察する。
データ収集の実践の具体的な証拠を提示し、データ保護と透明性を高めるための戦略を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study investigates the mechanisms of Surveillance Capitalism, focusing on personal data transfer during web navigation and searching. Analyzing network traffic reveals how various entities track and harvest digital footprints. The research reveals specific data types exchanged between users and web services, emphasizing the sophisticated algorithms involved in these processes. We present concrete evidence of data harvesting practices and propose strategies for enhancing data protection and transparency. Our findings highlight the need for robust data protection frameworks and ethical data usage to address privacy concerns in the digital age.
- Abstract(参考訳): 本研究では,Webナビゲーションと検索における個人データ転送に着目し,サーベイランス資本主義のメカニズムを考察する。
ネットワークトラフィックを分析することで、さまざまなエンティティがデジタルフットプリントを追跡して取得する方法が明らかになる。
この研究は、ユーザとWebサービスの間で交換される特定のデータタイプを明らかにし、これらのプロセスに関わる洗練されたアルゴリズムを強調している。
データ収集の実践の具体的な証拠を提示し、データ保護と透明性を高めるための戦略を提案する。
我々の調査結果は、デジタル時代のプライバシー問題に対処するために、堅牢なデータ保護フレームワークと倫理的データ利用の必要性を強調した。
関連論文リスト
- Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
ブラウザのフィンガープリントは、クッキーのような従来の方法なしでオンラインでユーザーを特定し、追跡するテクニックとして成長している。
本稿では, 各種指紋認証技術について概説し, 収集データのエントロピーと特異性を解析する。
論文 参考訳(メタデータ) (2024-11-18T20:32:31Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - A Survey on Differential Privacy for SpatioTemporal Data in Transportation Research [0.9790236766474202]
交通機関では、時空間データ収集が急増している。
このようなデータにおける微分プライバシーの最近の発展は、応用プライバシーの研究につながっている。
個人情報を公開することなく、研究や推論におけるこのようなデータの必要性に対処するために、重要な研究が提案されている。
論文 参考訳(メタデータ) (2024-07-18T03:19:29Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
合成ネットワーク活動データ(KiNETGAN)を生成するための知識注入型ジェネレーティブ・アドバイサル・ネットワークを提案する。
弊社のアプローチは、プライバシー問題に対処しながら、分散侵入検知のレジリエンスを高める。
論文 参考訳(メタデータ) (2024-05-26T08:02:02Z) - Securing Data Platforms: Strategic Masking Techniques for Privacy and
Security for B2B Enterprise Data [0.0]
ビジネス・ツー・ビジネス(B2B)企業はますますデータプラットフォームを構築しています。
データプライバシとセキュリティを本質的にサポートするメカニズムで、これらのデータプラットフォームを設計することが重要になっている。
データマスキングは、データプラットフォームアーキテクチャの重要な特徴である。
論文 参考訳(メタデータ) (2023-12-06T05:04:37Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Forensic Data Analytics for Anomaly Detection in Evolving Networks [13.845204373507016]
多くのサイバー犯罪や攻撃が、悪意ある活動を行うために進化するネットワークで開始されている。
本章では,ネットワーク異常検出のためのディジタル分析フレームワークについて紹介する。
実世界の進化するネットワークデータに関する実験は、提案した法医学データ分析ソリューションの有効性を示している。
論文 参考訳(メタデータ) (2023-08-17T20:09:33Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。