論文の概要: Approximating Ground States of Quantum Hamiltonians with Snapshot-QAOA
- arxiv url: http://arxiv.org/abs/2412.17990v1
- Date: Mon, 23 Dec 2024 21:18:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:43.137355
- Title: Approximating Ground States of Quantum Hamiltonians with Snapshot-QAOA
- Title(参考訳): スナップショットQAOAによる量子ハミルトニアンの基底状態の近似
- Authors: Reuben Tate, Quinn Langfitt, Elijah Pelofske, Ammar Kirmani, Andreas Bärtschi, John Golden, Stephan Eidenbenz,
- Abstract要約: Snapshot-QAOAは量子近似最適化アルゴリズム(QAOA)の変種である
量子ハミルトニアンの大きな集合の近似最小エネルギー固有状態を求める。
我々の基本的なアプローチは、連続時間線形アダバティックアニールスケジュールのトロタライズというアイデアにインスパイアされている。
- 参考スコア(独自算出の注目度): 0.6282171844772422
- License:
- Abstract: We present Snapshot-QAOA, a variation of the Quantum Approximate Optimization Algorithm (QAOA) that finds approximate minimum energy eigenstates of a large set of quantum Hamiltonians (i.e. Hamiltonians with non-diagonal terms). Traditionally, QAOA targets the task of approximately solving combinatorial optimization problems; Snapshot-QAOA enables a significant expansion of the use case space for QAOA to more general quantum Hamiltonians, where the goal is to approximate the ground-state. Such ground-state finding is a common challenge in quantum chemistry and material science applications. Snapshot-QAOA retains desirable variational-algorithm qualities of QAOA, in particular small parameter count and relatively shallow circuit depth. Snapshot-QAOA is thus a better trainable alternative to the NISQ-era Variational Quantum Eigensolver (VQE) algorithm, while retaining a significant circuit-depth advantage over the QEC-era Quantum Phase Estimation (QPE) algorithm. Our fundamental approach is inspired by the idea of Trotterization of a continuous-time linear adiabatic anneal schedule, which for sufficiently large QAOA depth gives very good performance. Snapshot-QAOA restricts the QAOA evolution to not phasing out the mixing Hamiltonian completely at the end of the evolution, instead evolving only a partial typical linear QAOA schedule, thus creating a type of snapshot of the typical QAOA evolution. As a test case, we simulate Snapshot-QAOA on a particular 16 qubit J1-J2 frustrated square transverse field Ising model with periodic boundary conditions.
- Abstract(参考訳): 本稿では,量子近似最適化アルゴリズム(QAOA)の変種であるSnapshot-QAOAを提案する。
スナップショット-QAOAはQAOAのユースケース空間をより一般的な量子ハミルトニアンへ拡張し、そこでは基底状態の近似が目的である。
このような基底状態の発見は、量子化学と物質科学の応用において共通の課題である。
スナップショットQAOAはQAOAの望ましい変分アルゴリズム特性、特に小パラメータ数と比較的浅い回路深さを維持している。
したがって、Snapshot-QAOAは、QEC-era Quantum Phase Estimation (QPE)アルゴリズムよりも重要な回路深度優位性を保ちながら、NISQ-era Variational Quantum Eigensolver (VQE)アルゴリズムのより良いトレーニング可能な代替品である。
我々の基本的なアプローチは、十分に大きなQAOA深度が良い性能をもたらす連続時間線形アダバティックアニールスケジュールのトロタライズというアイデアに着想を得たものである。
スナップショット-QAOAはQAOAの進化を制限し、進化の終わりにミキシングハミルトニアンを完全に解き放たないようにし、代わりに部分的な典型的な線形QAOAスケジュールだけを進化させ、典型的なQAOAの進化のスナップショットを作る。
テストケースとして、周期境界条件を持つ16量子ビットJ1-J2フラストレーション正方形横フィールドIsingモデル上でSnapshot-QAOAをシミュレートする。
関連論文リスト
- Connecting the Hamiltonian structure to the QAOA performance and energy landscape [0.0]
量子交互演算子 Ansatz (QAOA) は2次非制約二項最適化問題の解法に有効である。
本研究は,短期量子デバイスにおけるアルゴリズムの堅牢性と最適化タスクの可能性を強調する。
論文 参考訳(メタデータ) (2024-07-05T11:32:46Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
量子ニューラルネットワーク(QNN)は、現代の量子マシンの力を発揮する。
ハンドクラフト対称アンサーゼを持つQNNは、一般に非対称アンサーゼを持つものよりも訓練性が高い。
本稿では,QNNのグローバル最適収束を定量化するために,実効量子ニューラルネットワークカーネル(EQNTK)を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:17:55Z) - Improving the performance of quantum approximate optimization for
preparing non-trivial quantum states without translational symmetry [10.967081346848687]
本研究では,量子近似最適化アルゴリズム(QAOA)の性能について検討した。
本稿では,パラメータ化資源であるハミルトンが支援する一般化QAOAを提案する。
我々の研究は、翻訳対称性のないプログラマブル量子プロセッサ上でQAOAを実行する方法である。
論文 参考訳(メタデータ) (2022-06-06T14:17:58Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Quantum Approximate Optimization Algorithm applied to the binary
perceptron [0.46664938579243564]
本稿では,量子アニーリング(QA)と量子近似最適化アルゴリズム(QAOA)を,ニューラルネットワークにおける教師あり学習のパラダイムタスクに適用する。
我々はQAOAパラメータに対する最適滑らかな解の存在を証明し、同じ問題の典型例間で伝達可能であることを示す。
従来のQAよりもQAOAの性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-12-19T18:33:22Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum annealing initialization of the quantum approximate optimization
algorithm [0.0]
量子近似最適化アルゴリズム(QAOA)は、近い将来の量子アルゴリズムである。
QAOAで必要とされる外部パラメータの最適化は、パフォーマンスのボトルネックになる可能性がある。
本研究では、ランダムグラフ上のMaxCut問題に適用されたQAOAの最適化景観を可視化する。
論文 参考訳(メタデータ) (2021-01-14T17:45:13Z) - Bridging Classical and Quantum with SDP initialized warm-starts for QAOA [4.76507354067301]
本稿では,QAOAをグラフ内のすべての可能なカットの偏重重ね合わせで初期化する,古典的な前処理ステップを紹介する。
我々は、QAOA-Warmと呼ばれるこのQAOAの変種が、トレーニング時間が少なく、低い回路深度で標準QAOAより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-27T02:57:22Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
変分量子アルゴリズム (VQA) の中心成分は状態準備回路(英語版)であり、アンザッツ(英語版)または変分形式(英語版)とも呼ばれる。
ここでは、対称性を破るユニタリを組み込んだ「解」を導入することで、このアプローチが必ずしも有利であるとは限らないことを示す。
この研究は、より一般的な対称性を破るアンスの開発に向けた第一歩となり、物理学や化学問題への応用に繋がる。
論文 参考訳(メタデータ) (2020-08-03T18:00:05Z) - Momentum Q-learning with Finite-Sample Convergence Guarantee [49.38471009162477]
本稿では,有限サンプル保証を用いたモーメントに基づくQ-ラーニングアルゴリズムのクラスを解析する。
線形関数近似とマルコフサンプリングによるMomentumQの収束保証を確立する。
提案したMomentumQが他のモーメントベースのQ-ラーニングアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2020-07-30T12:27:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。