BCR-Net: Boundary-Category Refinement Network for Weakly Semi-Supervised X-Ray Prohibited Item Detection with Points
- URL: http://arxiv.org/abs/2412.18918v1
- Date: Wed, 25 Dec 2024 14:37:05 GMT
- Title: BCR-Net: Boundary-Category Refinement Network for Weakly Semi-Supervised X-Ray Prohibited Item Detection with Points
- Authors: Sanjoeng Wong,
- Abstract summary: We study Weakly Semi-Supervised X-ray Prohibited Item Detection with Points (WSSPID-P)
We propose a novel textbfBoundary-textbfCategory textbfRefinement textbfNetwork (textbfBCR-Net) that requires only a few box annotations and a large number of point annotations.
BCR-Net is built based on Group R-CNN and introduces a new Boundary Refinement (BR) module and a new Category Refinement (CR)
- Score: 0.0
- License:
- Abstract: Automatic prohibited item detection in X-ray images is crucial for public safety. However, most existing detection methods either rely on expensive box annotations to achieve high performance or use weak annotations but suffer from limited accuracy. To balance annotation cost and detection performance, we study Weakly Semi-Supervised X-ray Prohibited Item Detection with Points (WSSPID-P) and propose a novel \textbf{B}oundary-\textbf{C}ategory \textbf{R}efinement \textbf{Net}work (\textbf{BCR-Net}) that requires only a few box annotations and a large number of point annotations. BCR-Net is built based on Group R-CNN and introduces a new Boundary Refinement (BR) module and a new Category Refinement (CR) module. The BR module develops a dual attention mechanism to focus on both the boundaries and salient features of prohibited items. Meanwhile, the CR module incorporates contrastive branches into the heads of RPN and ROI by introducing a scale- and rotation-aware contrastive loss, enhancing intra-class consistency and inter-class separability in the feature space. Based on the above designs, BCR-Net effectively addresses the closely related problems of imprecise localization and inaccurate classification. Experimental results on public X-ray datasets show the effectiveness of BCR-Net, achieving significant performance improvements to state-of-the-art methods under limited annotations.
Related papers
- HELPNet: Hierarchical Perturbations Consistency and Entropy-guided Ensemble for Scribble Supervised Medical Image Segmentation [4.034121387622003]
We propose HELPNet, a novel scribble-based weakly supervised segmentation framework.
HELPNet integrates three modules to bridge the gap between annotation efficiency and segmentation performance.
HELPNet significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation.
arXiv Detail & Related papers (2024-12-25T01:52:01Z) - Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization [60.899082019130766]
We introduce a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization.
FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions.
PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN.
arXiv Detail & Related papers (2024-07-23T15:07:52Z) - Boundary Discretization and Reliable Classification Network for Temporal Action Detection [39.17204328036531]
Temporal action detection aims to recognize the action category and determine each action instance's starting and ending time in untrimmed videos.
Mixed methods have achieved remarkable performance by seamlessly merging anchor-based and anchor-free approaches.
We propose a novel Boundary Discretization and Reliable Classification Network (BDRC-Net) that addresses the issues above by introducing boundary discretization and reliable classification modules.
arXiv Detail & Related papers (2023-10-10T08:14:24Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Illicit item detection in X-ray images for security applications [7.519872646378835]
Automated detection of contraband items in X-ray images can significantly increase public safety.
Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task.
This paper proposes a two-fold improvement of such algorithms for the X-ray analysis domain.
arXiv Detail & Related papers (2023-05-03T07:28:05Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
Uncertainty-based active learning policies fail to balance the trade-off between point cloud informativeness and box-level annotation costs.
We propose textscCrb, which hierarchically filters out the point clouds of redundant 3D bounding box labels.
Experiments show that the proposed approach outperforms existing active learning strategies.
arXiv Detail & Related papers (2023-01-23T02:43:03Z) - Mitigating Algorithmic Bias with Limited Annotations [65.060639928772]
When sensitive attributes are not disclosed or available, it is needed to manually annotate a small part of the training data to mitigate bias.
We propose Active Penalization Of Discrimination (APOD), an interactive framework to guide the limited annotations towards maximally eliminating the effect of algorithmic bias.
APOD shows comparable performance to fully annotated bias mitigation, which demonstrates that APOD could benefit real-world applications when sensitive information is limited.
arXiv Detail & Related papers (2022-07-20T16:31:19Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Exploring Bottom-up and Top-down Cues with Attentive Learning for Webly
Supervised Object Detection [76.9756607002489]
We propose a novel webly supervised object detection (WebSOD) method for novel classes.
Our proposed method combines bottom-up and top-down cues for novel class detection.
We demonstrate our proposed method on PASCAL VOC dataset with three different novel/base splits.
arXiv Detail & Related papers (2020-03-22T03:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.