論文の概要: VQE for Ising Model \& A Comparative Analysis of Classical and Quantum Optimization Methods
- arxiv url: http://arxiv.org/abs/2412.19176v1
- Date: Thu, 26 Dec 2024 11:25:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:01.479306
- Title: VQE for Ising Model \& A Comparative Analysis of Classical and Quantum Optimization Methods
- Title(参考訳): Ising Model \&A Comparison Analysis of Classical and Quantum Optimization Methods
- Authors: Duc-Truyen Le, Vu-Linh Nguyen, Triet Minh Ha, Cong-Ha Nguyen, Quoc-Hung Nguyen, Van-Duy Nguyen,
- Abstract要約: 本稿では,新しい量子最適化手法QN-SPSA+PSRを提案する。
QN-SPSA計算効率とPSRの正確な勾配を統合し、安定性と収束速度の両方を改善している。
また、IsingモデルとNISQで最もよく動作するものを見つけるために、量子回路アンサッツ構造を詳細に研究する。
- 参考スコア(独自算出の注目度): 1.03905835096574
- License:
- Abstract: In this study, we delved into several optimization methods, both classical and quantum, and analyzed the quantum advantage that each of these methods offered, and then we proposed a new combinatorial optimization scheme, deemed as QN-SPSA+PSR which combines calculating approximately Fubini-study metric (QN-SPSA) and the exact evaluation of gradient by Parameter-Shift Rule (PSR). The QN-SPSA+PSR method integrates the QN-SPSA computational efficiency with the precise gradient computation of the PSR, improving both stability and convergence speed while maintaining low computational consumption. Our results provide a new potential quantum supremacy in the VQE's optimization subroutine and enhance viable paths toward efficient quantum simulations on Noisy Intermediate-Scale Quantum Computing (NISQ) devices. Additionally, we also conducted a detailed study of quantum circuit ansatz structures in order to find the one that would work best with the Ising model and NISQ, in which we utilized the symmetry of the investigated model.
- Abstract(参考訳): 本研究では,古典的手法と量子的手法の両方を探索し,これらの手法が提案した量子的優位性を解析し,約フビニスタディメトリック(QN-SPSA)とパラメータシフトルール(PSR)による勾配の正確な評価を組み合わせた新しい組合せ最適化手法を提案する。
QN-SPSA+PSR法は、QN-SPSA計算効率とPSRの正確な勾配計算を統合し、低い計算消費を維持しながら安定性と収束速度を両立させる。
この結果は,VQEの最適化サブルーチンに新たな量子超越性を与えるとともに,ノイズ中間規模量子コンピューティング(NISQ)デバイス上での効率的な量子シミュレーションへの有効な経路を向上する。
さらに,Ising モデルと NISQ に最適である量子回路アンサッツ構造を詳細に検討し,その対称性を利用した。
関連論文リスト
- Classical Pre-optimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications [0.6361348748202732]
スパース波動関数回路ソルバ(SWCS)を用いたADAPT-VQEの実装と性能について報告する。
SWCSは計算コストと精度のバランスを調整できるため、分子電子構造計算へのADAPT-VQEの適用が拡張される。
ADAPT-VQE/SWCSで生成されるパラメータ化アンサッツを用いて量子シミュレーションを事前最適化することにより、従来の高性能コンピューティングのパワーを活用することを目指す。
論文 参考訳(メタデータ) (2024-11-12T16:52:31Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
本稿では,変分量子近似スペクトルクラスタリング(VQASC)アルゴリズムを提案する。
VQASCは、伝統的に古典的な問題で必要とされるシステムサイズ、Nよりも少ないパラメータの最適化を必要とする。
合成と実世界の両方のデータセットから得られた数値結果について述べる。
論文 参考訳(メタデータ) (2023-09-08T17:54:42Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
量子ニューラルネットワーク(QNN)は、現代の量子マシンの力を発揮する。
ハンドクラフト対称アンサーゼを持つQNNは、一般に非対称アンサーゼを持つものよりも訓練性が高い。
本稿では,QNNのグローバル最適収束を定量化するために,実効量子ニューラルネットワークカーネル(EQNTK)を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:17:55Z) - Quantum Approximate Optimization Algorithm applied to the binary
perceptron [0.46664938579243564]
本稿では,量子アニーリング(QA)と量子近似最適化アルゴリズム(QAOA)を,ニューラルネットワークにおける教師あり学習のパラダイムタスクに適用する。
我々はQAOAパラメータに対する最適滑らかな解の存在を証明し、同じ問題の典型例間で伝達可能であることを示す。
従来のQAよりもQAOAの性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-12-19T18:33:22Z) - Gradient-free quantum optimization on NISQ devices [0.0]
重み依存学習の最近の進歩を考察し、適切な回路アーキテクチャとパラメータチューニングのトレードオフに対処する戦略を提案する。
遺伝的競合を介して回路を評価するNEATに基づくアルゴリズムの使用を検討し、パラメータ数を超えることにより問題を回避します。
論文 参考訳(メタデータ) (2020-12-23T10:24:54Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Momentum Q-learning with Finite-Sample Convergence Guarantee [49.38471009162477]
本稿では,有限サンプル保証を用いたモーメントに基づくQ-ラーニングアルゴリズムのクラスを解析する。
線形関数近似とマルコフサンプリングによるMomentumQの収束保証を確立する。
提案したMomentumQが他のモーメントベースのQ-ラーニングアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2020-07-30T12:27:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。