論文の概要: Towards Better Spherical Sliced-Wasserstein Distance Learning with Data-Adaptive Discriminative Projection Direction
- arxiv url: http://arxiv.org/abs/2412.19212v1
- Date: Thu, 26 Dec 2024 13:23:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:28.202260
- Title: Towards Better Spherical Sliced-Wasserstein Distance Learning with Data-Adaptive Discriminative Projection Direction
- Title(参考訳): データ適応型識別的投影方向を用いた球スライス・ワッサースタイン距離学習
- Authors: Hongliang Zhang, Shuo Chen, Lei Luo, Jian Yang,
- Abstract要約: 元々の球スライテッド=ワッサーシュタインでは、全ての射影方向は等しく扱われる。
本稿では,新しいデータ適応型球面スライス・ワッサースタイン距離を提案する。
- 参考スコア(独自算出の注目度): 41.056943683319176
- License:
- Abstract: Spherical Sliced-Wasserstein (SSW) has recently been proposed to measure the discrepancy between spherical data distributions in various fields, such as geology, medical domains, computer vision, and deep representation learning. However, in the original SSW, all projection directions are treated equally, which is too idealistic and cannot accurately reflect the importance of different projection directions for various data distributions. To address this issue, we propose a novel data-adaptive Discriminative Spherical Sliced-Wasserstein (DSSW) distance, which utilizes a projected energy function to determine the discriminative projection direction for SSW. In our new DSSW, we introduce two types of projected energy functions to generate the weights for projection directions with complete theoretical guarantees. The first type employs a non-parametric deterministic function that transforms the projected Wasserstein distance into its corresponding weight in each projection direction. This improves the performance of the original SSW distance with negligible additional computational overhead. The second type utilizes a neural network-induced function that learns the projection direction weight through a parameterized neural network based on data projections. This further enhances the performance of the original SSW distance with less extra computational overhead. Finally, we evaluate the performance of our proposed DSSW by comparing it with several state-of-the-art methods across a variety of machine learning tasks, including gradient flows, density estimation on real earth data, and self-supervised learning.
- Abstract(参考訳): Spherical Sliced-Wasserstein (SSW) は、最近、地質学、医学領域、コンピュータビジョン、深層表現学習など、様々な分野における球面データ分布の相違を測定するために提案されている。
しかし、元のSSWでは、全ての射影方向が等しく扱われ、これは理想的すぎるため、様々なデータ分布に対する異なる射影方向の重要性を正確に反映できない。
そこで本研究では,SSWの識別射影方向を決定するために,投射エネルギー関数を用いた新たなデータ適応型球面スライク・ワッサースタイン距離を提案する。
新しいDSSWでは、射影方向の重みを完全な理論的保証とともに生成する2種類の射影エネルギー関数を導入する。
最初の型は非パラメトリック決定関数を用いて、投影されたワッサーシュタイン距離を各射影方向の対応する重みに変換する。
これにより、余分な計算オーバーヘッドを伴わずに、元のSSW距離の性能を向上させることができる。
第2のタイプは、データプロジェクションに基づいてパラメータ化されたニューラルネットワークを通じて、投射方向の重みを学習するニューラルネットワーク誘発関数を使用する。
これにより、余分な計算オーバーヘッドを少なくして、元のSSW距離の性能をさらに向上する。
最後に,提案するDSSWの性能を,勾配流,実地データの密度推定,自己教師型学習など,さまざまな機械学習タスクの最先端手法と比較することにより評価した。
関連論文リスト
- Revisiting Disparity from Dual-Pixel Images: Physics-Informed Lightweight Depth Estimation [3.6337378417255177]
完成度に基づくネットワークに基づく軽量な分散度推定手法を提案する。
DP固有の相違誤差をパラメトリックにモデル化し、トレーニング中のサンプリングに使用することにより、DPのユニークな特性を取得する。
その結果,提案手法はシステム全体の規模を従来の手法の1/5に減らし,最先端の成果を得た。
論文 参考訳(メタデータ) (2024-11-06T09:03:53Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
様々な深度センサによる不正確な深度測定を改善するために偏光イメージングを利用するフレームワークを提案する。
まず、偏光データとセンサ深度マップから高密度で完全な深度マップを推定するために、ニューラルネットワークを訓練した学習ベースの戦略を採用する。
大規模データセット上で事前学習したRGBモデルを有効に活用するためのPPFT(Polarization Prompt Fusion Tuning)戦略を提案する。
論文 参考訳(メタデータ) (2024-04-05T17:55:33Z) - Improved Generalization of Weight Space Networks via Augmentations [53.87011906358727]
深度重み空間(DWS)における学習は新たな研究方向であり、2次元および3次元神経場(INRs, NeRFs)への応用
我々は、この過度な適合の理由を実証的に分析し、主要な理由は、DWSデータセットの多様性の欠如であることがわかった。
そこで本研究では,重み空間におけるデータ拡張戦略について検討し,重み空間に適応したMixUp法を提案する。
論文 参考訳(メタデータ) (2024-02-06T15:34:44Z) - GeONet: a neural operator for learning the Wasserstein geodesic [13.468026138183623]
本稿では、初期分布と終端分布の入力対から2つのエンドポイント分布を接続するワッサーシュタイン測地線への非線形マッピングを学習するメッシュ不変なディープニューラルネットワークであるGeONetを提案する。
シミュレーション例では,GeONet が標準 OT ソルバと同等の精度で,MNIST データセットに比較して,予測段階の計算コストを桁違いに大幅に削減することを示した。
論文 参考訳(メタデータ) (2022-09-28T21:55:40Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
本稿では,統計的分布の観点から知覚空間の品質劣化をモデル化する。
品質は、深い特徴領域におけるワッサーシュタイン距離に基づいて測定される。
ニューラルネットワークの特徴に基づいて実行されるディープワッサースタイン距離(ディープWSD)は、品質汚染のより良い解釈性をもたらす。
論文 参考訳(メタデータ) (2022-08-05T02:46:12Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
拡張スライスされたワッサーシュタイン距離(ASWD)と呼ばれる新しい距離測定法を提案する。
ASWDは、ニューラルネットワークによってパラメータ化された高次元超曲面への最初のマッピングサンプルによって構成される。
数値的な結果から、ASWDは、合成問題と実世界の問題の両方において、他のワッサーシュタイン変種を著しく上回っていることが示されている。
論文 参考訳(メタデータ) (2020-06-15T23:00:08Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
最先端の手法では、深いニューラルネットワークを使用して、LiDARスキャンの各点のセマンティッククラスを予測する。
LiDAR測定を処理するための強力で効率的な方法は、2次元の画像のような投影を使うことである。
メモリの制約だけでなく、パフォーマンスの向上やランタイムの改善など、さまざまなテクニックを実証する。
論文 参考訳(メタデータ) (2020-04-06T11:08:12Z) - Distributional Sliced-Wasserstein and Applications to Generative
Modeling [27.014748003733544]
Sliced-Wasserstein distance (SW)とその変種Max Sliced-Wasserstein distance (Max-SW)は近年広く使われている。
分散スライス-ワッサーシュタイン距離(DSW)という新しい距離を提案する。
DSWはMax-SWの一般化であり、最適なプッシュフォワード測度を求めることで効率的に計算できることを示す。
論文 参考訳(メタデータ) (2020-02-18T04:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。