HBT interferometry and Quantum Detection of Primordial Gravitational Waves in Hořava-Lifshitz Gravity
- URL: http://arxiv.org/abs/2412.19514v1
- Date: Fri, 27 Dec 2024 08:13:52 GMT
- Title: HBT interferometry and Quantum Detection of Primordial Gravitational Waves in Hořava-Lifshitz Gravity
- Authors: Sugumi Kanno, Hiroki Matsui, Shinji Mukohyama,
- Abstract summary: Hovrava-Lifshitz gravity is recognized as a renormalizable, unitary, andvariantally free quantum field theory of gravity.
In this paper, we investigate the quantum nature of primordial gravitational waves generated in Hovrava-Lifshitz gravity.
- Score: 0.0
- License:
- Abstract: Ho\v{r}ava-Lifshitz gravity (to be precise, its projectable version) is recognized as a renormalizable, unitary, and asymptotically free quantum field theory of gravity. Notably, one of its cosmological predictions is that it can produce scale-invariant primordial density fluctuations and primordial gravitational waves without relying on inflation. In this paper, we investigate the quantum nature of the primordial gravitational waves generated in Ho\v{r}ava-Lifshitz gravity. It has been suggested that, for some inflationary models, the non-classicality of primordial gravitational waves in the squeezed coherent quantum state can be detected using the Hanbury Brown - Twiss (HBT) interferometry. We show that in Ho\v{r}ava-Lifshitz gravity, scale-invariant primordial gravitational waves can be generated during both the radiation-dominated and matter-dominated eras of the Universe. Moreover, the frequency range of their quantum signatures is shown to extend beyond that of inflationary models.
Related papers
- Entanglement and squeezing of gravitational waves [0.0]
We show that the self-interactions present in the effective field theory formulation of general relativity can couple gravitational wave modes and generate nonclassical states.
The output of gravitational nonlinear processes can also be sensitive to quantum features of the input states, indicating that nonlinearities can act both as sources and detectors of quantum features of gravitational waves.
arXiv Detail & Related papers (2025-01-28T16:08:45Z) - Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Unveiling gravity's quantum fingerprint through gravitational waves [0.49157446832511503]
We introduce an innovative method to explore gravity's quantum aspects using a novel theoretical framework.
Our model delves into gravity-induced entanglement (GIE) while sidestepping classical communication limitations imposed by the LOCC principle.
arXiv Detail & Related papers (2024-03-17T16:06:44Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum signatures in nonlinear gravitational waves [0.0]
We investigate quantum signatures in gravitational waves using tools from quantum optics.
We show that Squeezed-coherent gravitational waves can enhance or suppress the signal measured by an interferometer.
We also show that Gaussian gravitational wave quantum states can be reconstructed from measurements over an ensemble of optical fields interacting with a single copy of the gravitational wave.
arXiv Detail & Related papers (2021-11-02T17:55:53Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
An experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors.
We review and investigate an important subset of quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.
arXiv Detail & Related papers (2021-10-06T07:21:09Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.