An Addressable and Tunable Module for Donor-based Scalable Silicon Quantum Computing
- URL: http://arxiv.org/abs/2412.20055v1
- Date: Sat, 28 Dec 2024 07:12:49 GMT
- Title: An Addressable and Tunable Module for Donor-based Scalable Silicon Quantum Computing
- Authors: Shihang Zhang, Yu He, Peihao Huang,
- Abstract summary: Donor-based spin qubit offers a promising silicon quantum computing route for building large-scale qubit arrays.
State-of-the-art device designs face scalability challenges, notably in achieving tunable two-qubit coupling and ensuring qubit addressability.
Here, we propose a surface-code-compatible architecture, where each module has both tunable two-qubit gates and addressable single-qubit gates by introducing only a single extra donor in a pair of donors.
- Score: 6.728197954427639
- License:
- Abstract: Donor-based spin qubit offers a promising silicon quantum computing route for building large-scale qubit arrays, attributed to its long coherence time and advancements in nanoscale donor placement. However, the state-of-the-art device designs face scalability challenges, notably in achieving tunable two-qubit coupling and ensuring qubit addressability. Here, we propose a surface-code-compatible architecture, where each module has both tunable two-qubit gates and addressable single-qubit gates by introducing only a single extra donor in a pair of donors. We found that to compromise between the requirement of tunability and that of addressability, an asymmetric scheme is necessary. In this scheme, the introduced extra donor is strongly tunnel-coupled to one of the donor spin qubits for addressable single-qubit operation, while being more weakly coupled to the other to ensure the turning on and off of the two-qubit operation. The fidelity of single-qubit and two-qubit gates can exceed the fault-tolerant threshold in our design. Additionally, the asymmetric scheme effectively mitigates valley oscillations, allowing for engineering precision tolerances up to a few nanometers. Thus, our proposed scheme presents a promising prototype for large-scale, fault-tolerant, donor-based spin quantum processors.
Related papers
- A spinless spin qubit [0.0]
All-electrical baseband control of qubits facilitates scaling up quantum processors by removing issues of crosstalk and heat generation.
In semiconductor quantum dots, this is enabled by multi-spin qubit encodings, such as the exchange-only qubit.
Our design offers a robust and scalable pathway for semiconductor spin qubit technologies.
arXiv Detail & Related papers (2024-12-18T09:38:35Z) - Optimal control in large open quantum systems: the case of transmon readout and reset [44.99833362998488]
We present a framework that combines the adjoint-state method together with reverse-time backpropagation to solve prohibitively large open-system quantum control problems.
We apply this framework to optimize two inherently dissipative operations in superconducting qubits.
Our results show that while standard pulses for dispersive readout are nearly optimal, adding a transmon drive during the protocol can yield 2x improvements in fidelity and duration.
arXiv Detail & Related papers (2024-03-21T18:12:51Z) - Charge-parity switching effects and optimisation of transmon-qubit design parameters [0.0]
We identify optimal ranges for qubit design parameters, grounded in comprehensive noise modeling.
A charge-parity switch can be the dominant quasiparticle-related error source of a two-qubit gate.
We present a performance metric for quantum circuit execution.
arXiv Detail & Related papers (2023-09-29T12:05:27Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Scalable and robust quantum computing on qubit arrays with fixed
coupling [0.0]
We propose a scheme for scalable and robust quantum computing on two-dimensional arrays of qubits with fixed longitudinal coupling.
This opens the possibility for bypassing the device complexity associated with tunable couplers required in conventional quantum computing hardware.
arXiv Detail & Related papers (2021-10-14T21:45:49Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - An exchange-based surface-code quantum computer architecture in silicon [0.8078491757252693]
Phosphorus donor spins in silicon offer promising characteristics for the implementation of robust qubits.
This work presents a proposal for a fast exchange-based surface-code quantum computer architecture.
The architecture is compatible with the existing fabrication capabilities and may serve as a blueprint for the experimental implementation of a full-scale fault-tolerant quantum computer.
arXiv Detail & Related papers (2021-07-26T06:26:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.