論文の概要: The intrinsic motivation of reinforcement and imitation learning for sequential tasks
- arxiv url: http://arxiv.org/abs/2412.20573v1
- Date: Sun, 29 Dec 2024 20:44:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:01:56.614408
- Title: The intrinsic motivation of reinforcement and imitation learning for sequential tasks
- Title(参考訳): 逐次課題における強化と模倣学習の本質的動機
- Authors: Sao Mai Nguyen,
- Abstract要約: この研究は、強化学習と模倣学習の間に新しいドメインブリッジを考案することを目的としている。
学習エージェントが学習カリキュラムを自動的に選択するための経験的進歩に基づく本質的な動機付けの共通的な定式化を提案する。
我々は、複数のタスクを学習するための機械学習アルゴリズムを用いて、社会的にガイドされた本質的な動機付けの枠組みを開発した。
- 参考スコア(独自算出の注目度): 0.5439020425818999
- License:
- Abstract: This work in the field of developmental cognitive robotics aims to devise a new domain bridging between reinforcement learning and imitation learning, with a model of the intrinsic motivation for learning agents to learn with guidance from tutors multiple tasks, including sequential tasks. The main contribution has been to propose a common formulation of intrinsic motivation based on empirical progress for a learning agent to choose automatically its learning curriculum by actively choosing its learning strategy for simple or sequential tasks: which task to learn, between autonomous exploration or imitation learning, between low-level actions or task decomposition, between several tutors. The originality is to design a learner that benefits not only passively from data provided by tutors, but to actively choose when to request tutoring and what and whom to ask. The learner is thus more robust to the quality of the tutoring and learns faster with fewer demonstrations. We developed the framework of socially guided intrinsic motivation with machine learning algorithms to learn multiple tasks by taking advantage of the generalisability properties of human demonstrations in a passive manner or in an active manner through requests of demonstrations from the best tutor for simple and composing subtasks. The latter relies on a representation of subtask composition proposed for a construction process, which should be refined by representations used for observational processes of analysing human movements and activities of daily living. With the outlook of a language-like communication with the tutor, we investigated the emergence of a symbolic representation of the continuous sensorimotor space and of tasks using intrinsic motivation. We proposed within the reinforcement learning framework, a reward function for interacting with tutors for automatic curriculum learning in multi-task learning.
- Abstract(参考訳): 発達認知ロボティクスの分野でのこの研究は、強化学習と模倣学習の間の新たなドメインブリッジを考案することを目的としており、学習エージェントが複数のタスク(シーケンシャルタスクを含む)から指導で学ぶための本質的な動機のモデルである。
本研究の主な貢献は、学習エージェントが学習カリキュラムを自動的に選択するための経験的進歩に基づく本質的なモチベーションの共通な定式化である。
その独創性は、教師が提供するデータから受動的に恩恵を受けることができる学習者を設計することである。
したがって、学習者はチューターの質に対してより堅牢であり、より少ない実演でより速く学習する。
機械学習アルゴリズムを用いた社会的指導型本質的なモチベーションの枠組みを開発し,人間の実演の汎用性を受動的に,あるいは能動的に活用して複数の課題を学習する手法を開発した。
後者は建設工程において提案されたサブタスク構成の表現に依存しており、人間の動きや日常生活の活動を分析する観察過程に使用される表現によって洗練されるべきである。
教師との言語ライクなコミュニケーションの展望から,本質的なモチベーションを用いた連続感覚運動空間とタスクの象徴的表現の出現について検討した。
マルチタスク学習における自動カリキュラム学習のために,教師と対話する報酬関数である強化学習フレームワークを提案する。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Saliency-Regularized Deep Multi-Task Learning [7.3810864598379755]
マルチタスク学習は、知識を共有するために複数の学習タスクを強制し、一般化能力を改善する。
現代のディープマルチタスク学習は、潜在機能とタスク共有を共同で学習することができるが、それらはタスク関係において不明瞭である。
本稿では,潜在的特徴と明示的な課題関係を共同で学習するマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-03T20:26:44Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Human-Centered Prior-Guided and Task-Dependent Multi-Task Representation
Learning for Action Recognition Pre-Training [8.571437792425417]
本稿では,人間中心の事前知識を利用した行動認識事前学習フレームワークを提案する。
具体的には、人間の構文解析モデルから知識を抽出し、表現の意味的能力を強化する。
さらに,知識蒸留とコントラスト学習を組み合わせることで,タスク依存型マルチタスクフレームワークを構成する。
論文 参考訳(メタデータ) (2022-04-27T06:51:31Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
外部教師が提供した構造化アドバイスから学習する「教育可能な」意思決定システムに基づく対話型学習のための新しい指導パラダイムを提案する。
我々は、アドバイスから学ぶエージェントが、標準的な強化学習アルゴリズムよりも人的監督力の少ない新しいスキルを習得できることを示す。
論文 参考訳(メタデータ) (2022-03-19T03:22:57Z) - Behavior Self-Organization Supports Task Inference for Continual Robot
Learning [18.071689266826212]
本稿では,ロボット制御タスクの連続学習に対する新しいアプローチを提案する。
本手法は, 漸進的に自己組織化された行動によって, 行動埋め込みの教師なし学習を行う。
従来の手法とは異なり,本手法ではタスク分布の仮定は行わず,タスクを推論するタスク探索も必要としない。
論文 参考訳(メタデータ) (2021-07-09T16:37:27Z) - Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer
Learning to Discover Task Hierarchy [0.0]
オープンエンド環境では、ロボットは階層的強化学習において複数のパラメータ化された制御タスクを学習する必要がある。
最も複雑なタスクは、より単純なタスクから知識を転送することでより簡単に学習でき、タスクにアクションの複雑さを適用することでより早く学習できることを示します。
複雑な行動のタスク指向表現(手順と呼ばれる)を提案し、オンラインのタスク関係とアクションプリミティブの無制限のシーケンスを学び、環境の異なる可観測性を制御する。
論文 参考訳(メタデータ) (2021-02-19T10:44:08Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
本稿では,情報とアーキテクチャの制約を,確率論的モデリング文献のアイデアと組み合わせて行動の事前学習を行う方法について考察する。
このような潜伏変数の定式化が階層的強化学習(HRL)と相互情報と好奇心に基づく目的との関係について論じる。
シミュレーションされた連続制御領域に適用することで,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-27T13:17:18Z) - LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities [119.88381048477854]
LEMMAデータセットを導入し、細心の注意深い設定で、行方不明な次元に対処するための単一の家を提供する。
我々は、人間と物体の相互作用による原子間相互作用を密に注釈し、日常の活動の構成性、スケジューリング、割り当ての土台として提供する。
この取り組みにより、マシンビジョンコミュニティは、目標指向の人間活動を調べ、現実世界におけるタスクのスケジューリングと割り当てをさらに研究できることを期待します。
論文 参考訳(メタデータ) (2020-07-31T00:13:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。