論文の概要: Robust Matrix Completion for Discrete Rating-Scale Data
- arxiv url: http://arxiv.org/abs/2412.20802v1
- Date: Mon, 30 Dec 2024 08:49:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:02:18.432938
- Title: Robust Matrix Completion for Discrete Rating-Scale Data
- Title(参考訳): 離散的レーティングスケールデータに対するロバスト行列補完
- Authors: Aurore Archimbaud, Andreas Alfons, Ines Wilms,
- Abstract要約: 行列完備化は、その既知のエントリを用いて部分的に観察された行列の未知のエントリを予測することを目的としている。
本稿では,レーティングスケールデータの離散性に合わせた行列補完アルゴリズムを提案する。
さらに,提案手法と競合する手法の性能を,連続ではなく個別の評価尺度を用いて検討した。
- 参考スコア(独自算出の注目度): 1.8638865257327277
- License:
- Abstract: Matrix completion has gained considerable interest in recent years. The goal of matrix completion is to predict the unknown entries of a partially observed matrix using its known entries. Although common applications feature discrete rating-scale data, such as user-product rating matrices in recommender systems or surveys in the social and behavioral sciences, methods for matrix completion are almost always designed for and studied in the context of continuous data. Furthermore, only a small subset of the literature considers matrix completion in the presence of corrupted observations despite their common occurrence in practice. Examples include attacks on recommender systems (i.e., malicious users deliberately manipulating ratings to influence the recommender system to their advantage), or careless respondents in surveys (i.e., respondents providing answers irrespective of what the survey asks of them due to a lack of attention). We introduce a matrix completion algorithm that is tailored towards the discrete nature of rating-scale data and robust to the presence of corrupted observations. In addition, we investigate the performance of the proposed method and its competitors with discrete rating-scale (rather than continuous) data as well as under various missing data mechanisms and types of corrupted observations.
- Abstract(参考訳): マトリックスの完成は近年、かなりの関心を集めている。
行列完備化の目標は、その既知のエントリを用いて部分的に観察された行列の未知のエントリを予測することである。
一般的なアプリケーションは、推薦システムにおけるユーザ製品評価行列や社会・行動科学におけるサーベイのような、個別の評価スケールのデータを特徴としているが、行列補完の方法は、常に連続したデータの文脈で設計され研究されている。
さらに、文献のごく一部の部分だけが、実際によく見られるにもかかわらず、崩壊した観察の存在下での行列の完成を考察している。
例えば、リコメンデーターシステムに対する攻撃(例えば、悪意のあるユーザーがリコメンデーターシステムに影響を与えるために故意に評価を操作)や、サーベイで不注意な回答者(すなわち、調査が注意不足のために何を尋ねているかに関わらず回答を提供する回答者)がある。
本稿では,評価尺度データの離散的性質に合わせた行列補完アルゴリズムを提案する。
さらに,提案手法と競合手法の性能を,個別の評価尺度(連続的な評価尺度ではなく,連続的な評価尺度)を用いて検討した。
関連論文リスト
- Concentration properties of fractional posterior in 1-bit matrix completion [0.0]
この研究は、しばしば1ビット行列完備化と呼ばれるバイナリ観測のシナリオに特に対処する。
一般の非一様サンプリング方式を考慮し、分数後方の有効性に関する理論的保証を提供することにより、このギャップに対処する。
我々の結果は、頻繁な文献に見られるものと同等であるが、制限的な仮定は少ない。
論文 参考訳(メタデータ) (2024-04-13T11:22:53Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Exploiting Observation Bias to Improve Matrix Completion [16.57405742112833]
本稿では,行列補完の変種について考察する。
目標は、バイアスと関心の結果の間の共有情報を利用して予測を改善することである。
この2段階のアルゴリズムでは,従来の行列補完法に比べて平均2乗誤差が30倍小さいことが判明した。
論文 参考訳(メタデータ) (2023-06-07T20:48:35Z) - A Generalized Latent Factor Model Approach to Mixed-data Matrix
Completion with Entrywise Consistency [3.299672391663527]
マトリックスコンプリート(Matrix completion)は、部分的に観察された行列における欠落したエントリの予測に関する機械学習手法のクラスである。
非線型因子モデルの一般族の下での低ランク行列推定問題として定式化する。
低ランク行列を推定するためのエントリーワイドな一貫した推定器を提案する。
論文 参考訳(メタデータ) (2022-11-17T00:24:47Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Causal Matrix Completion [15.599296461516984]
マトリックス完備化(Matrix completion)は、ノイズ観測のスパース部分集合から基礎となる行列を復元する研究である。
伝統的に、行列の成分は「ランダムに完全に欠落している」と仮定される。
論文 参考訳(メタデータ) (2021-09-30T14:17:56Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
もっとも単純な設定であっても、無知性仮定に基づく推定は誤解を招く可能性があることを示す。
異種処理効果評価のための機械学習ベンチマークデータセットを2つ検討した。
ベンチマークデータセットの固有の特性が、他のものよりもいくつかのアルゴリズムを好んでいる点を強調します。
論文 参考訳(メタデータ) (2021-07-28T13:21:27Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Robust Matrix Completion with Mixed Data Types [0.0]
我々は,データ型が混在する部分的なエントリを持つ構造的低ランク行列を復元する問題を考察する。
ほとんどのアプローチは、基礎となる分布は1つしかないと仮定し、低階の制約は、行列 Satten Norm によって正則化される。
本稿では, 並列化に適したアルゴリズムフレームワークとともに, 高い回復保証を有する計算可能な統計手法を提案し, 混合データ型に対する部分的に観測されたエントリを持つ低階行列を1ステップで復元する。
論文 参考訳(メタデータ) (2020-05-25T21:35:10Z) - A Robust Functional EM Algorithm for Incomplete Panel Count Data [66.07942227228014]
完全無作為な仮定(MCAR)の下での数え上げ過程の平均関数を推定する機能的EMアルゴリズムを提案する。
提案アルゴリズムは、いくつかの一般的なパネル数推定手法をラップし、不完全数にシームレスに対処し、ポアソン過程の仮定の誤特定に頑健である。
本稿では, 数値実験による提案アルゴリズムの有用性と喫煙停止データの解析について述べる。
論文 参考訳(メタデータ) (2020-03-02T20:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。