論文の概要: Investigating layer-selective transfer learning of QAOA parameters for Max-Cut problem
- arxiv url: http://arxiv.org/abs/2412.21071v1
- Date: Mon, 30 Dec 2024 16:41:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:01:47.259441
- Title: Investigating layer-selective transfer learning of QAOA parameters for Max-Cut problem
- Title(参考訳): Max-Cut問題に対するQAOAパラメータの層選択転写学習の検討
- Authors: Francesco Aldo Venturelli, Sreetama Das, Filippo Caruso,
- Abstract要約: パラメータ転送後のMax-Cut問題の近似解を改善する上での個別QAOA層の役割を数値的に検討する。
これらの研究は、全てのレイヤを最適化するよりも、より少ない時間で、レイヤのサブセットを最適化することがより効果的であることを示している。
- 参考スコア(独自算出の注目度): 1.515687944002438
- License:
- Abstract: Quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm (VQA) ideal for noisy intermediate-scale quantum (NISQ) processors, and is highly successful for solving combinatorial optimization problems (COPs). It has been observed that the optimal variational parameters obtained from one instance of a COP can be transferred to another instance, producing sufficiently satisfactory solutions for the latter. In this context, a suitable method for further improving the solution is to fine-tune a subset of the transferred parameters. We numerically explore the role of optimizing individual QAOA layers in improving the approximate solution of the Max-Cut problem after parameter transfer. We also investigate the trade-off between a good approximation and the required optimization time when optimizing transferred QAOA parameters. These studies show that optimizing a subset of layers can be more effective at a lower time-cost compared to optimizing all layers.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、ノイズの多い中間スケール量子(NISQ)プロセッサに理想的な変分量子アルゴリズム(VQA)であり、組合せ最適化問題(COP)の解法として高い成功を収めている。
COPの1つのインスタンスから得られる最適な変分パラメータを別のインスタンスに移すことができ、後者に対して十分満足な解が得られることが観察されている。
この文脈では、解をさらに改善するための適切な方法は、転送されたパラメータのサブセットを微調整することである。
パラメータ転送後のMax-Cut問題の近似解を改善するために,個々のQAOA層を最適化する役割を数値的に検討する。
また、転送されたQAOAパラメータを最適化する場合、良い近似と必要な最適化時間とのトレードオフについても検討する。
これらの研究は、全てのレイヤを最適化するよりも、より少ない時間で、レイヤのサブセットを最適化することがより効果的であることを示している。
関連論文リスト
- Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm [1.0971022294548696]
量子近似最適化アルゴリズム(QAOA)は、量子拡張最適化による量子優位性を達成するための最も有望な候補の1つである。
本研究では,5種類のグラフ埋め込み手法を適用し,パラメータ転送可能性に対する適切なドナー候補を決定する。
この手法を用いて,パラメータ最適化に要するイテレーション数を効果的に削減し,目標問題に対する近似解を桁違いに高速化する。
論文 参考訳(メタデータ) (2024-01-12T16:01:53Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
本稿では,変分量子アルゴリズムにおけるパラメータ化回路の最適化手法を提案する。
本稿では,量子近似最適化アルゴリズム (QAOA) を最大$k$-cut問題に適用した例について述べる。
論文 参考訳(メタデータ) (2023-10-16T12:56:22Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Iterative Layerwise Training for Quantum Approximate Optimization
Algorithm [0.39945675027960637]
最適化問題の解法における量子近似最適化アルゴリズム(QAOA)の能力は近年,盛んに研究されている。
本稿では,QAOAによる問題解決における最適化コスト削減の可能性を検討する。
論文 参考訳(メタデータ) (2023-09-24T05:12:48Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
変分量子アルゴリズム(VQA)は、学術・工業研究への応用に短期的な量子ハードウェアを使用するための有望な道を提供する。
SLSQP, COBYLA, CMA-ES, SPSAの4つの最適化手法の性能について検討した。
論文 参考訳(メタデータ) (2021-11-26T12:13:20Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。