論文の概要: Make Shuffling Great Again: A Side-Channel Resistant Fisher-Yates Algorithm for Protecting Neural Networks
- arxiv url: http://arxiv.org/abs/2501.00798v1
- Date: Wed, 01 Jan 2025 10:46:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:09.432369
- Title: Make Shuffling Great Again: A Side-Channel Resistant Fisher-Yates Algorithm for Protecting Neural Networks
- Title(参考訳): ニューラルネットワークを保護するサイドチャネル抵抗型魚介類アルゴリズム「Shuffling」
- Authors: Leonard Puškáč, Marek Benovič, Jakub Breier, Xiaolu Hou,
- Abstract要約: そこで本研究では,SCA-セキュアなFisher-Yatesアルゴリズムの設計を提案する。
この対策がSCAに対して有効であることを実験的に評価した。
- 参考スコア(独自算出の注目度): 4.734824660843964
- License:
- Abstract: Neural network models implemented in embedded devices have been shown to be susceptible to side-channel attacks (SCAs), allowing recovery of proprietary model parameters, such as weights and biases. There are already available countermeasure methods currently used for protecting cryptographic implementations that can be tailored to protect embedded neural network models. Shuffling, a hiding-based countermeasure that randomly shuffles the order of computations, was shown to be vulnerable to SCA when the Fisher-Yates algorithm is used. In this paper, we propose a design of an SCA-secure version of the Fisher-Yates algorithm. By integrating the masking technique for modular reduction and Blakely's method for modular multiplication, we effectively remove the vulnerability in the division operation that led to side-channel leakage in the original version of the algorithm. We experimentally evaluate that the countermeasure is effective against SCA by implementing a correlation power analysis attack on an embedded neural network model implemented on ARM Cortex-M4. Compared to the original proposal, the memory overhead is $2\times$ the biggest layer of the network, while the time overhead varies from $4\%$ to $0.49\%$ for a layer with $100$ and $1000$ neurons, respectively.
- Abstract(参考訳): 組み込みデバイスに実装されたニューラルネットワークモデルは、サイドチャネル攻撃(SCA)の影響を受けやすいことが示されており、重みやバイアスなどの独自のモデルパラメータの回復を可能にする。
現在、組み込みニューラルネットワークモデルを保護するために調整可能な暗号化実装を保護するために使用可能な対策方法が提供されている。
計算順序をランダムにシャッフルする隠れベースの対策であるShufflingは、Fisher-Yatesアルゴリズムを使用すると、SCAに対して脆弱であることが示されている。
本稿では,フィッシャー・イェーツアルゴリズムのSCAセキュアバージョンの設計を提案する。
モジュアルリダクションのためのマスキング手法とブレークリーの乗算法を統合することにより、元のバージョンのアルゴリズムにサイドチャネルリークをもたらす分割操作の脆弱性を効果的に除去する。
ARM Cortex-M4上に実装された組込みニューラルネットワークモデルに対して相関電力解析攻撃を実装することにより,SCA対策が有効であることを実験的に評価した。
当初の提案と比較すると、メモリオーバーヘッドはネットワークの最大の層である2ドル(約2,300円)、メモリオーバーヘッドは4ドル(約4,800円)から0.49ドル(約1,300円)まで様々である。
関連論文リスト
- DeepNcode: Encoding-Based Protection against Bit-Flip Attacks on Neural Networks [4.734824660843964]
ニューラルネットワークに対するビットフリップ攻撃に対する符号化に基づく保護手法について,DeepNcodeと題して紹介する。
この結果、保護マージンが最大で$4-$bitが$7.6times、$2.4timesが$8-$bitの量子化ネットワークで$12.4timesになることが示された。
論文 参考訳(メタデータ) (2024-05-22T18:01:34Z) - Secure Deep Learning-based Distributed Intelligence on Pocket-sized
Drones [75.80952211739185]
パームサイズのナノドロンはエッジノードの魅力的なクラスであるが、その限られた計算資源は大規模なディープラーニングモデルの実行を妨げている。
エッジフォッグ計算のパラダイムを採用することで、計算の一部をフォグにオフロードすることができるが、フォグノードや通信リンクが信頼できない場合、セキュリティ上の懸念が生じる。
ナノドローン上でランダムなサブネットワークを冗長に実行することにより,霧の計算を検証する分散エッジフォッグ実行方式を提案する。
論文 参考訳(メタデータ) (2023-07-04T08:29:41Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
暗黙のニューラルネットワークは、競合性能とメモリ消費の削減を提供する。
入力逆流の摂動に関して、それらは不安定なままである。
本稿では,暗黙的ニューラルネットワークのロバスト性検証のための理論的および計算的枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-10T03:08:55Z) - Efficiently Learning Any One Hidden Layer ReLU Network From Queries [27.428198343906352]
ネットワークへのブラックボックスアクセスを提供するニューラルネットワークアクティベーションを任意の1つの隠蔽層で学習するアルゴリズムを初めて提供する。
最悪のネットワークであっても、完全時間で効率を保証できるのはこれが初めてです。
論文 参考訳(メタデータ) (2021-11-08T18:59:40Z) - Segmentation Fault: A Cheap Defense Against Adversarial Machine Learning [0.0]
最近発表されたディープニューラルネットワーク(DNN)に対する攻撃は、重要なシステムでこの技術を使用する際のセキュリティリスクを評価する方法論とツールの重要性を強調している。
本稿では,ディープニューラルネットワーク分類器,特に畳み込みを防御する新しい手法を提案する。
私たちの防衛費は、検出精度の面では安いが、消費電力が少ないという意味では安い。
論文 参考訳(メタデータ) (2021-08-31T04:56:58Z) - Fast Falsification of Neural Networks using Property Directed Testing [0.1529342790344802]
本稿では,反例の探索を指示するニューラルネットワークの偽造アルゴリズムを提案する。
提案アルゴリズムは, 微分自由サンプリングに基づく最適化手法を用いる。
フェールシフィケーション手順は、他の検証ツールが安全でないと報告しているすべての安全でないインスタンスを検出する。
論文 参考訳(メタデータ) (2021-04-26T09:16:27Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization [67.62847721118142]
モデルが正しい脆弱性信号を捕捉して予測する能力を評価する。
SAR(Signal-Aware Recall)と呼ばれる新しい指標を用いて,モデルの信号認識を計測する。
その結果,90年代以降のリコールから60年代以降のリコールは,新たな指標で大幅に減少した。
論文 参考訳(メタデータ) (2020-11-25T20:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。