論文の概要: Harnessing Multi-Agent LLMs for Complex Engineering Problem-Solving: A Framework for Senior Design Projects
- arxiv url: http://arxiv.org/abs/2501.01205v1
- Date: Thu, 02 Jan 2025 11:25:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 16:54:32.228369
- Title: Harnessing Multi-Agent LLMs for Complex Engineering Problem-Solving: A Framework for Senior Design Projects
- Title(参考訳): 複雑なエンジニアリング問題解決のためのマルチエージェントLLMのハーネス化: シニアデザインプロジェクトのためのフレームワーク
- Authors: Abdullah Mushtaq, Muhammad Rafay Naeem, Ibrahim Ghaznavi, Muhammad Imran Taj, Imran Hashmi, Junaid Qadir,
- Abstract要約: マルチエージェント大規模言語モデル(LLM)は、集合的知性を活用する能力において大きな注目を集めている。
本稿では,工学系学生が実施する上級設計プロジェクトを支援するために,マルチエージェント LLM の利用について検討する。
本稿では,問題定式化エージェント,システム複雑化エージェント,社会的・倫理的エージェント,プロジェクトマネージャなど,異なる専門家の視点でLLMエージェントが表現されるフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.0325111338432529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Agent Large Language Models (LLMs) are gaining significant attention for their ability to harness collective intelligence in complex problem-solving, decision-making, and planning tasks. This aligns with the concept of the wisdom of crowds, where diverse agents contribute collectively to generating effective solutions, making it particularly suitable for educational settings. Senior design projects, also known as capstone or final year projects, are pivotal in engineering education as they integrate theoretical knowledge with practical application, fostering critical thinking, teamwork, and real-world problem-solving skills. In this paper, we explore the use of Multi-Agent LLMs in supporting these senior design projects undertaken by engineering students, which often involve multidisciplinary considerations and conflicting objectives, such as optimizing technical performance while addressing ethical, social, and environmental concerns. We propose a framework where distinct LLM agents represent different expert perspectives, such as problem formulation agents, system complexity agents, societal and ethical agents, or project managers, thus facilitating a holistic problem-solving approach. This implementation leverages standard multi-agent system (MAS) concepts such as coordination, cooperation, and negotiation, incorporating prompt engineering to develop diverse personas for each agent. These agents engage in rich, collaborative dialogues to simulate human engineering teams, guided by principles from swarm AI to efficiently balance individual contributions towards a unified solution. We adapt these techniques to create a collaboration structure for LLM agents, encouraging interdisciplinary reasoning and negotiation similar to real-world senior design projects. To assess the efficacy of this framework, we collected six proposals of engineering and computer science of...
- Abstract(参考訳): マルチエージェント大規模言語モデル(LLM)は、複雑な問題解決、意思決定、計画タスクにおいて集団知性を活用する能力において、大きな注目を集めている。
これは群衆の知恵の概念と一致し、多様なエージェントが効果的なソリューションを生み出すために一括して貢献し、特に教育的設定に適している。
上級設計プロジェクト(英: Senior design project、英: capstone、またはfinal year project)は、工学教育において重要な役割を担い、理論的な知識を実践的な応用と統合し、批判的思考、チームワーク、現実世界の問題解決スキルを育む。
本稿では,工学系学生が実施する上級設計プロジェクトを支援するために,多分野の考察や,倫理的,社会的,環境的な問題に対処しながら技術的パフォーマンスを最適化するなど,相反する目的を含む多分野のLLMの利用について検討する。
本稿では,問題定式化エージェント,システム複雑化エージェント,社会的・倫理的エージェント,プロジェクトマネージャなど,異なる専門家の視点でLLMエージェントが表現されるフレームワークを提案する。
この実装は、協調、協力、交渉といった標準的なマルチエージェントシステム(MAS)の概念を活用し、各エージェントのための多様なペルソナを開発するために、プロンプトエンジニアリングを取り入れている。
これらのエージェントは、人間のエンジニアリングチームをシミュレートするために、リッチで協調的な対話に従事します。
我々はこれらの手法をLLMエージェントの協調構造に適応させ、現実世界のシニアデザインプロジェクトと同様の学際的推論と交渉を奨励する。
この枠組みの有効性を評価するため、我々は6つの工学と計算機科学の提案を収集した。
関連論文リスト
- Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
本稿では,モデルコンテキストプロトコル(MCP)によるマルチエージェントシステムの進化のための包括的フレームワークを提案する。
我々は、統合理論基盤、高度なコンテキスト管理技術、スケーラブルな調整パターンを開発することで、AIエージェントアーキテクチャに関するこれまでの研究を拡張した。
私たちは、現在の制限、新たな研究機会、そして業界全体にわたる潜在的な変革的応用を特定します。
論文 参考訳(メタデータ) (2025-04-26T03:43:03Z) - An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合した多エージェント自律メカトロニクス設計フレームワークを提案する。
このフレームワークは、言語駆動のワークフローを通じて運用され、構造化された人間のフィードバックを組み込んで、現実世界の制約下での堅牢なパフォーマンスを保証する。
完全に機能する自律型容器は、最適化された推進、コスト効率の高い電子機器、高度な制御を備えていた。
論文 参考訳(メタデータ) (2025-04-20T16:57:45Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - A Comprehensive Survey on Multi-Agent Cooperative Decision-Making: Scenarios, Approaches, Challenges and Perspectives [6.277211882332452]
多エージェント協調意思決定は、複数のエージェントが協力して、確立されたタスクを完了し、特定の目的を達成する。
これらの技術は、自律運転、ドローンナビゲーション、災害救助、シミュレートされた軍事的対立といった現実のシナリオに広く応用されている。
論文 参考訳(メタデータ) (2025-03-17T17:45:46Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
マルチエージェントシステム(Multi-Agent Systems、MAS)は、知的エージェントのグループによる複雑なタスクの協調と解決を可能にする。
この研究は、MASの協調的な側面に関する広範な調査を提供し、将来の研究を導くための枠組みを紹介している。
論文 参考訳(メタデータ) (2025-01-10T19:56:50Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - LLM-Based Multi-Agent Systems for Software Engineering: Literature Review, Vision and the Road Ahead [14.834072370183106]
本稿では,LMA(Multi-Agent)システムへのLarge Language Modelの統合の可能性について検討する。
複数のエージェントの協調的かつ専門的な能力を活用することで、LMAシステムは自律的な問題解決を可能にし、堅牢性を改善し、現実世界のソフトウェアプロジェクトの複雑さを管理するスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-04-07T07:05:40Z) - MacGyver: Are Large Language Models Creative Problem Solvers? [87.70522322728581]
本稿では, 現代LLMの創造的問題解決能力について, 制約付き環境下で検討する。
我々は1,600以上の実世界の問題からなる自動生成データセットであるMACGYVERを作成する。
我々はLLMと人間の両方にコレクションを提示し、それらの問題解決能力を比較して比較する。
論文 参考訳(メタデータ) (2023-11-16T08:52:27Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
大規模言語モデル(LLM)は、洗練された言語理解と生成能力を備えた人工知能の分野に革命をもたらした。
本稿では,LLMを用いた自律型マルチエージェントシステムが自律性とアライメントの動的相互作用をどのようにバランスさせるかを分析するために,総合的な多次元分類法を提案する。
論文 参考訳(メタデータ) (2023-10-05T16:37:29Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
本稿では,マルチエージェントシステムのパワーを活用した大規模言語モデル(LLM)の能力向上のための新しいフレームワークを提案する。
本フレームワークでは,複数の知的エージェントコンポーネントがそれぞれ特有な属性と役割を持つ協調環境を導入し,複雑なタスクをより効率的に効率的に処理する。
論文 参考訳(メタデータ) (2023-06-05T23:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。