論文の概要: Tech Report: Divide and Conquer 3D Real-Time Reconstruction for Improved IGS
- arxiv url: http://arxiv.org/abs/2501.01465v1
- Date: Tue, 31 Dec 2024 18:43:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:07.781434
- Title: Tech Report: Divide and Conquer 3D Real-Time Reconstruction for Improved IGS
- Title(参考訳): IGSの改良のための分割3次元リアルタイム再構成技術
- Authors: Yicheng Zhu,
- Abstract要約: パイプラインはフレーム選択、深さ推定、および3D再構成コンポーネントを統合する。
深度推定のための深度Anything V2とEndoDACの統合を含む最近の進歩について詳述する。
Hamlynデータセットで行った実験は、統合された手法の有効性を実証している。
- 参考スコア(独自算出の注目度): 0.3928181418647055
- License:
- Abstract: Tracking surgical modifications based on endoscopic videos is technically feasible and of great clinical advantages; however, it still remains challenging. This report presents a modular pipeline to divide and conquer the clinical challenges in the process. The pipeline integrates frame selection, depth estimation, and 3D reconstruction components, allowing for flexibility and adaptability in incorporating new methods. Recent advancements, including the integration of Depth-Anything V2 and EndoDAC for depth estimation, as well as improvements in the Iterative Closest Point (ICP) alignment process, are detailed. Experiments conducted on the Hamlyn dataset demonstrate the effectiveness of the integrated methods. System capability and limitations are both discussed.
- Abstract(参考訳): 内視鏡的ビデオに基づく外科的修正の追跡は技術的に可能であり、臨床上大きな利点があるが、依然として困難である。
本報告では, このプロセスにおける臨床上の課題を分割し, 克服するためのモジュールパイプラインについて述べる。
パイプラインはフレーム選択、深さ推定、および3D再構成コンポーネントを統合し、新しいメソッドを組み込む際の柔軟性と適応性を実現する。
深度推定のための奥行きV2と遠方DACの統合、ICP(Iterative Closest Point)アライメントプロセスの改善など、最近の進歩について詳述する。
Hamlynデータセットで行った実験は、統合された手法の有効性を実証している。
システムの能力と限界はどちらも議論されている。
関連論文リスト
- Federated Learning for Coronary Artery Plaque Detection in Atherosclerosis Using IVUS Imaging: A Multi-Hospital Collaboration [8.358846277772779]
経皮的冠動脈インターベンション(PCI)における血管内超音波(IVUS)画像の従来的解釈は時間集約的かつ矛盾する。
多段階セグメンテーションアーキテクチャを持つ並列2次元U-Netモデルを開発した。
0.706のDice similarity Coefficient (DSC) は、プラークを効果的に識別し、リアルタイムで円形の境界を検出する。
論文 参考訳(メタデータ) (2024-12-19T13:06:28Z) - Volumetric Reconstruction of Prostatectomy Specimens from Histology [0.0]
前立腺癌に対する外科的治療は、しばしば臓器切除、すなわち前立腺切除術を含む。
診断プロセスは、レポートで表現しにくい広範囲で複雑な情報を生成する。
この領域の既存のアプローチは、労働集約的で、臨床画像モダリティへの統合が困難であることが証明されている。
3D-SLIVERは、オープンソースの3DSlicer拡張として実装された、シンプルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-29T22:33:49Z) - Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy [3.1186464715409983]
本稿では,Depth Anything Modelのための新しい微調整戦略を提案する。
本手法は本態性に基づく教師なし単眼深度推定フレームワークと統合する。
SCAREDデータセットで得られた結果は,本手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2024-09-12T03:04:43Z) - A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery [8.909938295090827]
NeRFベースの技術は、暗黙的にシーンを再構築する能力に注目が集まっている。
一方、3D-GSは3Dガウシアンを明示的に使用し、NeRFの複雑なボリュームレンダリングの代替として2D平面に投影するシーンを表現している。
この研究は、最先端のSOTA(State-of-the-art)アプローチを探求し、レビューし、彼らのイノベーションと実装原則について議論する。
論文 参考訳(メタデータ) (2024-08-08T12:51:23Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
提案手法は, 進歩的半教師付き学習, 適応的学習戦略, 境界拡張など, 革新的な手法を取り入れたものである。
3DRAデータセットによる実験結果から,メッシュベースのセグメンテーション指標を用いて,本手法の優位性を示す。
論文 参考訳(メタデータ) (2023-08-07T14:16:52Z) - Semantic-SuPer: A Semantic-aware Surgical Perception Framework for
Endoscopic Tissue Classification, Reconstruction, and Tracking [21.133420628173067]
外科的知覚の枠組みであるSemantic-SuPerを提案する。
データアソシエーション、3D再構成、内視鏡的シーンの追跡を容易にするため、幾何学的および意味的な情報を統合する。
論文 参考訳(メタデータ) (2022-10-29T19:33:21Z) - BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion [85.24673400250671]
ニューラル・ボリューム・フュージョン (BNV-Fusion) は, ニューラル・暗黙表現とニューラル・レンダリングの最近の進歩を活用して高密度3次元再構成を行う。
新しい深度マップをグローバルな暗黙的表現に漸進的に統合するために、我々は新しい二段階融合戦略を提案する。
提案手法を定量的に定性的に評価し,既存手法よりも有意な改善を示した。
論文 参考訳(メタデータ) (2022-04-03T19:33:09Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3DフリーハンドUSは、幅広い範囲とフリーフォームスキャンを提供することで、この問題に対処することを約束している。
既存のディープラーニングベースの手法は、スキルシーケンスの基本ケースのみに焦点を当てている。
複雑なスキルシーケンスを考慮したセンサレスフリーハンドUS再構成手法を提案する。
論文 参考訳(メタデータ) (2021-07-31T16:06:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。