論文の概要: Adaptive Homophily Clustering: A Structure Homophily Graph Learning with Adaptive Filter for Hyperspectral Image
- arxiv url: http://arxiv.org/abs/2501.01595v1
- Date: Fri, 03 Jan 2025 01:54:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:42.212037
- Title: Adaptive Homophily Clustering: A Structure Homophily Graph Learning with Adaptive Filter for Hyperspectral Image
- Title(参考訳): Adaptive Homophily Clustering:Hyperspectral ImageのためのAdaptive Filterを用いた構造ホモフィリーグラフ学習
- Authors: Yao Ding, Weijie Kang, Aitao Yang, Zhili Zhang, Junyang Zhao, Jie Feng, Danfeng Hong, Qinhe Zheng,
- Abstract要約: ハイパースペクトル画像(HSI)クラスタリングは、ゼロトレーニングラベルによる基本的だが難しい課題である。
本稿では,HSIのための適応フィルタクラスタリング法(AHSGC)を用いたホモフィリ構造グラフ学習を提案する。
AHSGCには高いクラスタリング精度、低い計算複雑性、強い堅牢性が含まれています。
- 参考スコア(独自算出の注目度): 21.709368882043897
- License:
- Abstract: Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels. Currently, some deep graph clustering methods have been successfully explored for HSI due to their outstanding performance in effective spatial structural information encoding. Nevertheless, insufficient structural information utilization, poor feature presentation ability, and weak graph update capability limit their performance. Thus, in this paper, a homophily structure graph learning with an adaptive filter clustering method (AHSGC) for HSI is proposed. Specifically, homogeneous region generation is first developed for HSI processing and constructing the original graph. Afterward, an adaptive filter graph encoder is designed to adaptively capture the high and low frequency features on the graph for subsequence processing. Then, a graph embedding clustering self-training decoder is developed with KL Divergence, with which the pseudo-label is generated for network training. Meanwhile, homophily-enhanced structure learning is introduced to update the graph according to the clustering task, in which the orient correlation estimation is adopted to estimate the node connection, and graph edge sparsification is designed to adjust the edges in the graph dynamically. Finally, a joint network optimization is introduced to achieve network self-training and update the graph. The K-means is adopted to express the latent features. Extensive experiments and repeated comparative analysis have verified that our AHSGC contains high clustering accuracy, low computational complexity, and strong robustness. The code source will be available at https://github.com/DY-HYX.
- Abstract(参考訳): ハイパースペクトル画像(HSI)クラスタリングは、ゼロトレーニングラベルによる基本的だが難しい課題である。
現在,深層グラフクラスタリング手法は,空間構造情報の効果的な符号化における優れた性能のために,HSIの探索に成功している。
それでも、構造情報の利用不足、特徴提示能力の低下、グラフ更新能力の弱さはパフォーマンスを制限している。
本稿では,HSIのための適応フィルタクラスタリング法(AHSGC)を用いたホモフィリ構造グラフ学習を提案する。
具体的には、HSI処理と元のグラフ構築のために、まず均質な領域生成を開発した。
その後、適応フィルタグラフエンコーダは、サブシーケンス処理のためにグラフ上の高・低周波の特徴を適応的にキャプチャするように設計されている。
そして、ネットワークトレーニングのために擬似ラベルを生成するKL Divergenceを用いて、クラスタリング自己学習デコーダを埋め込んだグラフを開発する。
一方、クラスタリングタスクに従ってグラフを更新するために、ノード接続を推定するためにオリエント相関推定を採用し、グラフのエッジを動的に調整するためにグラフエッジスペーシフィケーションを設計する。
最後に、ネットワークの自己学習を実現し、グラフを更新するために、共同ネットワーク最適化を導入する。
K-meansは、潜伏した特徴を表現するために採用されている。
AHSGCはクラスタリング精度が高く,計算複雑性が低く,強靭性も高いことが確認された。
ソースコードはhttps://github.com/DY-HYX.comで入手できる。
関連論文リスト
- GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network [7.711922592226936]
本稿では,距離と動的しきい値の類似性に基づくフィルタリング機構を利用する,革新的な適応グラフ構築手法を提案する。
また、トランスフォーマーのグローバルな認識能力を組み合わせて、グラフ構造の表現を強化する。
システム全体のマッチング性能は平均3.8x-40.3x向上した。
論文 参考訳(メタデータ) (2024-12-24T07:05:55Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - Synergistic Deep Graph Clustering Network [14.569867830074292]
我々はSynC(Syngistic Deep Graph Clustering Network)というグラフクラスタリングフレームワークを提案する。
本稿では,構造拡張を導くための高品質な埋め込みを実現するために,TIGAE (Transform Input Graph Auto-Encoder) を設計する。
特に、表現学習と構造増強は重みを共有し、モデルパラメータの数を著しく減少させる。
論文 参考訳(メタデータ) (2024-06-22T09:40:34Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
グラフ構造学習は、欠落したリンクを追加し、スプリアス接続を取り除くことで、入力グラフの精細化を可能にする。
グラフ構造学習におけるこれまでの取り組みは、主に教師付き設定を中心に行われてきた。
グラフクラスタリングのためのtextbfhomophily-enhanced structure textbflearning という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:53:30Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
本稿では,学習可能な潜伏変数を用いて埋め込みを生成する自己構築グラフ(SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所的なコンテキストグラフを自動的に取得することができる。
本稿では,ISPRS Vaihingen データセット上で提案した SCG の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2020-03-15T21:55:24Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。