論文の概要: GenTREC: The First Test Collection Generated by Large Language Models for Evaluating Information Retrieval Systems
- arxiv url: http://arxiv.org/abs/2501.02408v1
- Date: Sun, 05 Jan 2025 00:27:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:05:16.848845
- Title: GenTREC: The First Test Collection Generated by Large Language Models for Evaluating Information Retrieval Systems
- Title(参考訳): GenTREC:情報検索システム評価のための大規模言語モデルによる最初のテストコレクション
- Authors: Mehmet Deniz Türkmen, Mucahid Kutlu, Bahadir Altun, Gokalp Cosgun,
- Abstract要約: GenTRECは、Large Language Model (LLM)によって生成された文書から完全に構築された最初のテストコレクションである。
我々は、生成したプロンプトのみに関連する文書を考察する一方、他の文書とトピックのペアは非関連として扱われる。
結果として得られたGenTRECコレクションは96,196のドキュメント、300のトピック、および18,964の関連性"判断"で構成されている。
- 参考スコア(独自算出の注目度): 0.33748750222488655
- License:
- Abstract: Building test collections for Information Retrieval evaluation has traditionally been a resource-intensive and time-consuming task, primarily due to the dependence on manual relevance judgments. While various cost-effective strategies have been explored, the development of such collections remains a significant challenge. In this paper, we present GenTREC , the first test collection constructed entirely from documents generated by a Large Language Model (LLM), eliminating the need for manual relevance judgments. Our approach is based on the assumption that documents generated by an LLM are inherently relevant to the prompts used for their generation. Based on this heuristic, we utilized existing TREC search topics to generate documents. We consider a document relevant only to the prompt that generated it, while other document-topic pairs are treated as non-relevant. To introduce realistic retrieval challenges, we also generated non-relevant documents, ensuring that IR systems are tested against a diverse and robust set of materials. The resulting GenTREC collection comprises 96,196 documents, 300 topics, and 18,964 relevance "judgments". We conducted extensive experiments to evaluate GenTREC in terms of document quality, relevance judgment accuracy, and evaluation reliability. Notably, our findings indicate that the ranking of IR systems using GenTREC is compatible with the evaluations conducted using traditional TREC test collections, particularly for P@100, MAP, and RPrec metrics. Overall, our results show that our proposed approach offers a promising, low-cost alternative for IR evaluation, significantly reducing the burden of building and maintaining future IR evaluation resources.
- Abstract(参考訳): 情報検索評価のためのテストコレクションの構築は、伝統的に資源集約的かつ時間を要する作業であり、主に手動の関連性判断に依存するためである。
様々な費用対効果戦略が検討されてきたが、こうしたコレクションの開発は依然として大きな課題である。
本稿では,Large Language Model (LLM) が生成した文書から構築した最初のテストコレクションであるGenTRECについて述べる。
提案手法は,LLMが生成した文書が生成に使用するプロンプトに本質的に関連しているという仮定に基づいている。
このヒューリスティックに基づいて,既存のTREC検索トピックを用いて文書を生成する。
我々は、生成したプロンプトのみに関連する文書を考察する一方、他の文書とトピックのペアは非関連として扱われる。
現実的な検索課題を導入するために、我々は関連のない文書も生成し、IRシステムが多種多様な頑健な素材に対してテストされることを保証した。
結果として得られたGenTRECコレクションは96,196のドキュメント、300のトピック、および18,964の関連性"判断"で構成されている。
我々は、文書品質、関連判定精度、評価信頼性の観点から、GenTRECを評価するための広範囲な実験を行った。
特に,GenTRECを用いたIRシステムのランキングは,従来のTRECテストコレクション(特にP@100,MAP,RPrec)と互換性があることが示唆された。
以上の結果から,提案手法はIR評価のための有望で低コストな代替手段であり,将来的なIR評価資源の構築と維持の負担を著しく低減することを示す。
関連論文リスト
- A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look [52.114284476700874]
本稿では,4つの異なる関連性評価手法が展開された大規模評価(TREC 2024 RAG Track)の結果について報告する。
自動生成UMBRELA判定は、完全に手動による判断を置き換えて、実行レベルの有効性を正確に捉えることができる。
意外なことに、LLMアシストは完全な手作業による評価と相関を増さないようで、人間のループプロセスに関連するコストは明らかな有意義な利益をもたらすものではないことを示唆している。
論文 参考訳(メタデータ) (2024-11-13T01:12:35Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
対話型質問応答(CQA)の文脈における大規模言語モデル(LLM)を評価するための新しいベンチマークであるInsCoQAを提案する。
InsCoQAは、百科事典スタイルの教育内容から派生したもので、複数の文書から手続き的ガイダンスを抽出し、解釈し、正確に要約する能力のモデルを評価する。
また,LLM支援型評価器であるInsEvalを提案する。
論文 参考訳(メタデータ) (2024-10-01T09:10:00Z) - Exploring Information Retrieval Landscapes: An Investigation of a Novel Evaluation Techniques and Comparative Document Splitting Methods [0.0]
本研究では, 教科書の構造的性質, 記事の簡潔さ, 小説の物語的複雑さについて, 明確な検索戦略が必要であることを示した。
オープンソースのモデルを用いて,質問対と回答対の包括的データセットを生成する新しい評価手法を提案する。
評価には、SequenceMatcher、BLEU、METEOR、BERT Scoreなどの重み付けされたスコアを使用して、システムの正確性と妥当性を評価する。
論文 参考訳(メタデータ) (2024-09-13T02:08:47Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - From Matching to Generation: A Survey on Generative Information Retrieval [21.56093567336119]
生成情報検索(GenIR)は新たなパラダイムとして登場し,近年注目を集めている。
本稿では,GenIRの最新研究動向を体系的にレビューすることを目的とする。
論文 参考訳(メタデータ) (2024-04-23T09:05:37Z) - Evaluating Retrieval Quality in Retrieval-Augmented Generation [21.115495457454365]
従来のエンドツーエンド評価手法は計算コストが高い。
本稿では,検索リストの各文書をRAGシステム内の大規模言語モデルで個別に利用するeRAGを提案する。
eRAGは、ランタイムを改善し、エンドツーエンド評価の最大50倍のGPUメモリを消費する、大きな計算上のアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-04-21T21:22:28Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - Sequencing Matters: A Generate-Retrieve-Generate Model for Building
Conversational Agents [9.191944519634111]
Georgetown InfoSense GroupはTREC iKAT 2023の課題を解決するために活動している。
提案手法は, 各カット数, 総合成功率において, nDCG において高い性能を示した。
我々のソリューションは、初期回答にLarge Language Models (LLMs) を用いること、BM25による回答基盤、ロジスティック回帰による通過品質フィルタリング、LLMによる回答生成である。
論文 参考訳(メタデータ) (2023-11-16T02:37:58Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
生成検索システムは、しばしばクエリに対する応答として、接地された生成されたテキストを直接返す。
このような生成的アドホック検索を適切に評価するには,テキスト応答の有用性の定量化が不可欠である。
論文 参考訳(メタデータ) (2023-11-08T14:05:00Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。