論文の概要: Neural network facilitated ab initio derivation of linear formula: A
case study on formulating the relationship between DNA motifs and gene
expression
- arxiv url: http://arxiv.org/abs/2208.09559v1
- Date: Fri, 19 Aug 2022 22:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 14:23:47.279962
- Title: Neural network facilitated ab initio derivation of linear formula: A
case study on formulating the relationship between DNA motifs and gene
expression
- Title(参考訳): ニューラルネットワークによる線形公式のab initio導出の促進 : dnaモチーフと遺伝子発現の関係を定式化するケーススタディ
- Authors: Chengyu Liu, Wei Wang
- Abstract要約: 本稿では、解釈可能なニューラルネットワークモデルに基づく新しいアプローチを用いて、シーケンスモチーフと線形式を導出するためのフレームワークを提案する。
この線形モデルは、深いニューラルネットワークモデルに匹敵する性能を持つプロモーター配列を用いて遺伝子発現レベルを予測することができることを示した。
- 参考スコア(独自算出の注目度): 8.794181445664243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing models with high interpretability and even deriving formulas to
quantify relationships between biological data is an emerging need. We propose
here a framework for ab initio derivation of sequence motifs and linear formula
using a new approach based on the interpretable neural network model called
contextual regression model. We showed that this linear model could predict
gene expression levels using promoter sequences with a performance comparable
to deep neural network models. We uncovered a list of 300 motifs with important
regulatory roles on gene expression and showed that they also had significant
contributions to cell-type specific gene expression in 154 diverse cell types.
This work illustrates the possibility of deriving formulas to represent biology
laws that may not be easily elucidated.
(https://github.com/Wang-lab-UCSD/Motif_Finding_Contextual_Regression)
- Abstract(参考訳): 高い解釈性と、生物学的データ間の関係を定量化するための公式を導出するモデルの開発は、新たなニーズである。
本稿では、文脈回帰モデルと呼ばれる解釈可能なニューラルネットワークモデルに基づく新しいアプローチを用いて、シーケンスモチーフと線形式を導出するためのフレームワークを提案する。
この線形モデルは、ディープニューラルネットワークモデルに匹敵するパフォーマンスを持つプロモーター配列を用いて遺伝子発現レベルを予測できることを示した。
遺伝子発現に重要な制御的役割を持つ300のモチーフのリストを発見し、154種類の異なる細胞型において、細胞型特異的な遺伝子発現に重要な寄与を示した。
この研究は、容易に解明できない生物学の法則を表す式を導出する可能性を示している。
(https://github.com/Wang-lab-UCSD/Motif_Finding_Contextual_Regression)
関連論文リスト
- Long-range gene expression prediction with token alignment of large language model [37.10820914895689]
本稿では,遺伝子配列の特徴を自然言語トークンと整合させる遺伝子配列Token Alignment(GTA)を提案する。
GTAは規制文法を学習し、遺伝子特異的な人間のアノテーションをプロンプトとして組み込むことができる。
GTAは、事前訓練された言語モデルを利用して、遺伝子発現予測に対する強力で斬新なクロスモーダルなアプローチを示す。
論文 参考訳(メタデータ) (2024-10-02T02:42:29Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
マルチモーダル単細胞数に対するフローベース条件生成モデルであるセルフロー・フォー・ジェネレーションを提案する。
本研究は, 新規な生成タスクを考慮に入れた上で, 重要な生物学的データ特性の回復性の向上を示唆するものである。
論文 参考訳(メタデータ) (2024-07-16T14:05:03Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - A Comparative Analysis of Gene Expression Profiling by Statistical and
Machine Learning Approaches [1.8954222800767324]
がん検体を分類する機械学習モデルの生物学的および方法論的限界について論じる。
遺伝子ランキングはこれらのモデルに適応した説明可能性法から得られる。
ブラックボックスニューラルネットワークによって学習された情報は、微分表現の概念と関連している。
論文 参考訳(メタデータ) (2024-02-01T18:17:36Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
マルチモーダル類似性学習グラフニューラルネットワークという新しいモデルを提案する。
マルチモーダル機械学習とディープグラフニューラルネットワークを組み合わせて、単一セルシークエンシングと空間転写データから遺伝子発現を学習する。
本モデルでは, 遺伝子機能, 組織機能, 疾患, 種進化の解析のために, 統合された遺伝子表現を効率よく生成する。
論文 参考訳(メタデータ) (2023-09-29T13:33:53Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - A single-cell gene expression language model [2.9112649816695213]
遺伝子間のコンテキスト依存を学習する機械学習システムを提案する。
我々のモデルであるExceiverは、自己教師型タスクを用いて、多様な細胞タイプで訓練されている。
生物学的アノテーションに関して,潜在サンプル表現の類似性プロファイルと学習された遺伝子埋め込みとの間に一致が認められた。
論文 参考訳(メタデータ) (2022-10-25T20:52:19Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。