論文の概要: CHAIR -- Classifier of Hallucination as Improver
- arxiv url: http://arxiv.org/abs/2501.02518v2
- Date: Wed, 22 Jan 2025 11:49:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:42:35.539587
- Title: CHAIR -- Classifier of Hallucination as Improver
- Title(参考訳): CHAIR -- 改善剤としての幻覚の分類
- Authors: Ao Sun,
- Abstract要約: トークンの各層からの内部ロジットを分析し,幻覚を検出するための教師付きフレームワークであるCHAIR(Classifier of Hallucination As ImproveR)を紹介する。
本手法は,すべての層にまたがるトークンロジットから,最大,最小,平均,標準偏差,傾斜といった,コンパクトな特徴セットを抽出し,過剰に収まることなく効果的な幻覚検出を可能にする。
- 参考スコア(独自算出の注目度): 1.397828249435483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce CHAIR (Classifier of Hallucination As ImproveR), a supervised framework for detecting hallucinations by analyzing internal logits from each layer of every token. Our method extracts a compact set of features such as maximum, minimum, mean, standard deviation, and slope-from the token logits across all layers, enabling effective hallucination detection without overfitting. Experiments on TruthfulQA and MMLU datasets demonstrate that CHAIR significantly improves detection accuracy, particularly in zero-shot scenarios, showcasing its robustness and generalizability. Beyond hallucination detection, CHAIR highlights the potential of using internal representations for designing advanced decoding strategies. By leveraging patterns in logits, we suggest that more sophisticated models and adaptive decoding methods could further reduce hallucinations and enhance text completion quality. CHAIR not only offers a practical solution for detecting hallucinations but also lays the groundwork for exploring richer representations in LLMs to improve their factuality and coherence.
- Abstract(参考訳): 本稿では,各トークンの各層からの内部ロジットを分析し,幻覚を検出するための教師付きフレームワークであるCHAIR(Classifier of Hallucination As ImproveR)を紹介する。
本手法は,すべての層にまたがるトークンロジットから,最大,最小,平均,標準偏差,傾斜といった,コンパクトな特徴セットを抽出し,過剰に収まることなく効果的な幻覚検出を可能にする。
TruthfulQAとMMLUデータセットの実験では、CHAIRは検出精度を大幅に向上し、特にゼロショットシナリオでは、その堅牢性と一般化性を示している。
幻覚検出以外にも、CHAIRは高度な復号戦略を設計するために内部表現を使用することの可能性を強調している。
ロジットのパターンを活用することにより、より洗練されたモデルと適応的な復号法が幻覚をさらに減らし、文章の完成性を高めることが示唆された。
CHAIRは幻覚を検出するための実用的なソリューションを提供するだけでなく、LLMにおけるより豊かな表現を探求し、それらの事実と一貫性を改善するための基礎となる。
関連論文リスト
- HalluLens: LLM Hallucination Benchmark [49.170128733508335]
大規模言語モデル(LLM)は、しばしばユーザ入力やトレーニングデータから逸脱する応答を生成する。
本稿では,新たな内因性評価タスクと既存内因性評価タスクを併用した総合幻覚ベンチマークを提案する。
論文 参考訳(メタデータ) (2025-04-24T13:40:27Z) - Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling [67.14942827452161]
VLM(Vision-Language Models)は視覚的理解に優れ、視覚幻覚に悩まされることが多い。
本研究では,幻覚を意識したトレーニングとオンザフライの自己検証を統合した統合フレームワークREVERSEを紹介する。
論文 参考訳(メタデータ) (2025-04-17T17:59:22Z) - Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models - [1.2499537119440245]
効率的なコントラストデコーディング(ECD)は、確率的幻覚検出を利用して、推定時に出力分布を文脈的に正確な解へとシフトする単純な方法である。
実験の結果,LCDは幻覚を効果的に軽減し,LVLMベンチマークの性能や計算時間に対して最先端の手法より優れることがわかった。
論文 参考訳(メタデータ) (2025-04-16T14:50:25Z) - Robust Hallucination Detection in LLMs via Adaptive Token Selection [25.21763722332831]
大きな言語モデル(LLM)の幻覚は、より広範なデプロイメントを妨げる重要な安全性上の懸念を引き起こす。
本研究では,適応的選択とクリティカルトークンの学習を通じて,幻覚の堅牢な検出を可能にする新しいアプローチであるHaMIを提案する。
本研究では,ハロシン化検出タスクの革新的な定式化により,このロバスト性を実現する。
論文 参考訳(メタデータ) (2025-04-10T15:39:10Z) - HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
本稿では,HuDExと命名された幻覚検出モデルについて説明する。
提案モデルでは,検出を説明と統合する新たなアプローチを提供し,ユーザとLLM自体がエラーを理解し,低減することができる。
論文 参考訳(メタデータ) (2025-02-12T04:17:02Z) - Layer Importance and Hallucination Analysis in Large Language Models via Enhanced Activation Variance-Sparsity [5.854247492297834]
本稿では,アクティベーション・ヴァリタンス・スパーシリティスコア(AVSS)を用いて,まず層の重要性を考察する。
AVSSを基盤として,レイヤ間の幻覚の適合性を評価するための改良版を提案する。
この改良されたアプローチは、Halucination-Specific Activation Variance(HSAV)とHalucination-Specific Sparsity(HSS)メトリクスを導入し、Halucination-prone層の正確な識別を可能にする。
論文 参考訳(メタデータ) (2024-11-15T09:33:47Z) - THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
事実的に誤ったコンテンツの生成である幻覚は、大規模言語モデルにおいてますます困難になっている。
本稿では,このギャップに対処する統合フレームワークとライブラリであるTHaMESを紹介する。
THaMES は LLM における幻覚の評価と緩和のためのエンドツーエンドのソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-17T16:55:25Z) - A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models [63.949883238901414]
本稿では,損失関数の勾配解析の特異な角度について述べる。
ExMATEはMLEの優れたサロゲートであり,DPOとMLEの代わりにExMATEを組み合わせることで,統計的(5-7%)と生成的(+18%)の性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-29T17:46:18Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
大規模言語モデル (LLM) は、様々な領域や広範囲のアプリケーションにまたがる、長い形式の質問応答タスクにおいて幻覚を示す。
現在の幻覚検出と緩和データセットはドメインやサイズによって制限されている。
本稿では,幻覚アノテーションデータセットを同時に,段階的にスケールアップする反復的自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T17:56:38Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
大規模ビジュアル言語モデル(LVLM)は、マルチモーダルデータの理解において、例外的な能力を示した。
彼らは必然的に幻覚に悩まされ、生成されたテキストと対応するイメージを切断する。
現在の視覚的コントラスト復号法のほとんどは、視覚的不確実性情報を導入して幻覚を緩和しようとするものである。
しかし、彼らは幻覚トークンを正確に誘導するのに苦労し、幻覚を緩和する効果を著しく制限した。
論文 参考訳(メタデータ) (2024-05-24T08:46:31Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T08:39:17Z) - Evolving parametrized Loss for Image Classification Learning on Small
Datasets [1.4685355149711303]
本稿ではメタロスネットワーク(MLN)と呼ばれるパラメタ化損失関数の進化のためのメタラーニング手法を提案する。
本手法では,MLNを識別対象関数として分類学習の枠組みに組み込む。
実験の結果,MLNは古典的クロスエントロピー誤差や平均二乗誤差と比較して,一般化を効果的に改善した。
論文 参考訳(メタデータ) (2021-03-15T10:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。