論文の概要: Deep Networks are Reproducing Kernel Chains
- arxiv url: http://arxiv.org/abs/2501.03697v1
- Date: Tue, 07 Jan 2025 11:01:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:50:14.282395
- Title: Deep Networks are Reproducing Kernel Chains
- Title(参考訳): ディープネットワークはカーネルチェインを再現している
- Authors: Tjeerd Jan Heeringa, Len Spek, Christoph Brune,
- Abstract要約: 我々は、ディープニューラルネットワーク関数がニューラルcRKBS関数であることを証明し、逆に有限データセット上で定義されたニューラルcRKBS関数はディープニューラルネットワークに対応する。
このアプローチは経験的リスク最小化問題に対するスパースソリューションを提供し、N$はデータポイントの数である1層あたりのニューロンに限らない。
- 参考スコア(独自算出の注目度): 1.2016264781280588
- License:
- Abstract: Identifying an appropriate function space for deep neural networks remains a key open question. While shallow neural networks are naturally associated with Reproducing Kernel Banach Spaces (RKBS), deep networks present unique challenges. In this work, we extend RKBS to chain RKBS (cRKBS), a new framework that composes kernels rather than functions, preserving the desirable properties of RKBS. We prove that any deep neural network function is a neural cRKBS function, and conversely, any neural cRKBS function defined on a finite dataset corresponds to a deep neural network. This approach provides a sparse solution to the empirical risk minimization problem, requiring no more than $N$ neurons per layer, where $N$ is the number of data points.
- Abstract(参考訳): ディープニューラルネットワークに適した関数空間を特定することは、依然として重要なオープンな疑問である。
浅いニューラルネットワークは自然にRKBS(Reproduction Kernel Banach Spaces)と関連付けられているが、ディープネットワークには固有の課題がある。
本研究では,RKBS を RKBS (cRKBS) の連鎖に拡張する。これは関数ではなくカーネルを構成する新しいフレームワークで,RKBS の望ましい特性を保っている。
我々は、ディープニューラルネットワーク関数がニューラルcRKBS関数であることを証明し、逆に有限データセット上で定義されたニューラルcRKBS関数はディープニューラルネットワークに対応する。
このアプローチは経験的リスク最小化問題に対するスパースソリューションを提供し、N$はデータポイントの数である1層あたりのニューロンに限らない。
関連論文リスト
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks [22.083873334272027]
我々は,スペーサーネットワークが,様々なデータセットの浅い深度で非スパースネットワークより優れていることを観察した。
カーネルリッジ回帰の一般化誤差に関する既存の理論を拡張した。
論文 参考訳(メタデータ) (2023-05-17T20:09:35Z) - On the Eigenvalue Decay Rates of a Class of Neural-Network Related
Kernel Functions Defined on General Domains [10.360517127652185]
一般領域上で定義されたカーネル関数の大きなクラスの固有値減衰率(EDR)を決定するための戦略を提供する。
この種類のカーネル関数は含まれているが、異なる深さと様々なアクティベーション関数を持つニューラルネットワークに付随する神経タンジェントカーネルに限らない。
論文 参考訳(メタデータ) (2023-05-04T08:54:40Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Deep Maxout Network Gaussian Process [1.9292807030801753]
我々は、深い無限幅の最大出力ネットワークとガウス過程(GP)の等価性を導出する。
私たちは、ディープマックスアウトネットワークカーネルとディープニューラルネットワークカーネルの接続を構築します。
論文 参考訳(メタデータ) (2022-08-08T23:52:26Z) - Deep Kronecker neural networks: A general framework for neural networks
with adaptive activation functions [4.932130498861987]
我々は,適応的アクティベーション機能を持つニューラルネットワークの汎用フレームワークとして,新しいタイプのニューラルネットワークKronecker Neural Network(KNN)を提案する。
適切な条件下では、KNNはフィードフォワードネットワークによる損失よりも早く損失を減少させる。
論文 参考訳(メタデータ) (2021-05-20T04:54:57Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
カーネルメソッドは、完全に接続された有限幅ネットワークより優れている。
中心とアンサンブルの有限ネットワークは後続のばらつきを減らした。
重みの減衰と大きな学習率の使用は、有限ネットワークと無限ネットワークの対応を破る。
論文 参考訳(メタデータ) (2020-07-31T01:57:47Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。