Explainable AI model reveals disease-related mechanisms in single-cell RNA-seq data
- URL: http://arxiv.org/abs/2501.03923v1
- Date: Tue, 07 Jan 2025 16:35:29 GMT
- Title: Explainable AI model reveals disease-related mechanisms in single-cell RNA-seq data
- Authors: Mohammad Usman, Olga Varea, Petia Radeva, Josep Canals, Jordi Abante, Daniel Ortiz,
- Abstract summary: Neurodegenerative diseases (NDDs) are complex and lack effective treatment due to their poorly understood mechanism.<n>In this work, we implement a method for identifying disease-related genes and the mechanistic explanation of disease progression based on NN model combined with SHAP.<n>Our results show that DGE and SHAP approaches offer both common and differential sets of altered genes and pathways, reinforcing the usefulness of XAI methods for a broader perspective of disease.
- Score: 2.975735171548829
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neurodegenerative diseases (NDDs) are complex and lack effective treatment due to their poorly understood mechanism. The increasingly used data analysis from Single nucleus RNA Sequencing (snRNA-seq) allows to explore transcriptomic events at a single cell level, yet face challenges in interpreting the mechanisms underlying a disease. On the other hand, Neural Network (NN) models can handle complex data to offer insights but can be seen as black boxes with poor interpretability. In this context, explainable AI (XAI) emerges as a solution that could help to understand disease-associated mechanisms when combined with efficient NN models. However, limited research explores XAI in single-cell data. In this work, we implement a method for identifying disease-related genes and the mechanistic explanation of disease progression based on NN model combined with SHAP. We analyze available Huntington's disease (HD) data to identify both HD-altered genes and mechanisms by adding Gene Set Enrichment Analysis (GSEA) comparing two methods, differential gene expression analysis (DGE) and NN combined with SHAP approach. Our results show that DGE and SHAP approaches offer both common and differential sets of altered genes and pathways, reinforcing the usefulness of XAI methods for a broader perspective of disease.
Related papers
- Discovery of Disease Relationships via Transcriptomic Signature Analysis Powered by Agentic AI [18.557987617477878]
This study introduces a transcriptomics-driven framework for discovering disease relationships by analyzing over 1300 disease-condition pairs.<n>We develop a novel pathway-based similarity framework that integrates multi- database enrichment analysis to quantify functional convergence across diseases.
arXiv Detail & Related papers (2025-08-06T04:25:40Z) - E-ABIN: an Explainable module for Anomaly detection in BIological Networks [1.7999333451993955]
E-ABIN is a general-purpose, explainable framework for Anomaly detection in Biological Networks.<n>It combines classical machine learning and graph-based deep learning techniques within a unified, user-friendly platform.<n>We demonstrate the utility of E-ABIN through case studies of bladder cancer and coeliac disease.
arXiv Detail & Related papers (2025-06-25T08:25:17Z) - Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.
By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
arXiv Detail & Related papers (2025-03-29T02:14:05Z) - scMamba: A Pre-Trained Model for Single-Nucleus RNA Sequencing Analysis in Neurodegenerative Disorders [43.24785083027205]
scMamba is a pre-trained model designed to improve the quality and utility of snRNA-seq analysis.
Inspired by the recent Mamba model, scMamba introduces a novel architecture that incorporates a linear adapter layer, gene embeddings, and bidirectional Mamba blocks.
We demonstrate that scMamba outperforms benchmark methods in various downstream tasks, including cell type annotation, doublet detection, imputation, and the identification of differentially expressed genes.
arXiv Detail & Related papers (2025-02-12T11:48:22Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations [4.602074643846298]
We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations.<n>We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
arXiv Detail & Related papers (2025-01-05T01:04:23Z) - Uncovering the Genetic Basis of Glioblastoma Heterogeneity through Multimodal Analysis of Whole Slide Images and RNA Sequencing Data [0.7499722271664147]
Glioblastoma is a highly aggressive form of brain cancer characterized by rapid progression and poor prognosis.<n>Our results reveal novel genes associated with glioblastoma.
arXiv Detail & Related papers (2024-10-23T07:55:40Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
Investigating the genetic architecture of complex diseases is challenging due to the highly polygenic and interactive landscape of genetic and environmental factors.
We trained artificial neural networks for predicting complex traits using both simulated and real genotype/phenotype datasets.
arXiv Detail & Related papers (2024-07-26T15:20:42Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - GENIE-NF-AI: Identifying Neurofibromatosis Tumors using Liquid Neural
Network (LTC) trained on AACR GENIE Datasets [0.0]
We propose an interpretable AI approach to diagnose patients with neurofibromatosis.
Our proposed approach outperformed existing models with 99.86% accuracy.
arXiv Detail & Related papers (2023-04-26T10:28:59Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Net is a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems.
Our application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes.
arXiv Detail & Related papers (2022-10-18T21:15:10Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Recent Advances in Network-based Methods for Disease Gene Prediction [15.625526953844638]
Disease-gene association through Genome-wide association study (GWAS) is an arduous task for researchers.
To provide the researchers with alternative low-cost disease-gene association evidence, computational approaches come into play.
Since molecular networks are able to capture complex interplay among molecules in diseases, they become one of the most extensively used data for disease-gene association prediction.
arXiv Detail & Related papers (2020-07-19T14:13:38Z) - Interpretable multimodal fusion networks reveal mechanisms of brain
cognition [26.954460880062506]
We develop an interpretable multimodal fusion model, gCAM-CCL, which can perform automated diagnosis and result interpretation simultaneously.
We validate the gCAM-CCL model on a brain imaging-genetic study, and show gCAM-CCL's performed well for both classification and mechanism analysis.
arXiv Detail & Related papers (2020-06-16T18:52:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.