論文の概要: STLCG++: A Masking Approach for Differentiable Signal Temporal Logic Specification
- arxiv url: http://arxiv.org/abs/2501.04194v1
- Date: Wed, 08 Jan 2025 00:06:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:54:47.205542
- Title: STLCG++: A Masking Approach for Differentiable Signal Temporal Logic Specification
- Title(参考訳): STLCG++:信号時間論理の微分化のためのマスキングアプローチ
- Authors: Parv Kapoor, Kazuki Mizuta, Eunsuk Kang, Karen Leung,
- Abstract要約: STLCG++は,STL計算を時間ステップで並列化するマスキングに基づく手法である。
また,時間間隔境界による時間的有界性の異なるスムース化手法も導入する。
STLCG++のメリットを,3つのロボティクスユースケースを通じて実証し,JAXとPyTorchのオープンソースPythonライブラリを提供する。
- 参考スコア(独自算出の注目度): 8.017203108408975
- License:
- Abstract: Signal Temporal Logic (STL) offers a concise yet expressive framework for specifying and reasoning about spatio-temporal behaviors of robotic systems. Attractively, STL admits the notion of robustness, the degree to which an input signal satisfies or violates an STL specification, thus providing a nuanced evaluation of system performance. Notably, the differentiability of STL robustness enables direct integration to robotics workflows that rely on gradient-based optimization, such as trajectory optimization and deep learning. However, existing approaches to evaluating and differentiating STL robustness rely on recurrent computations, which become inefficient with longer sequences, limiting their use in time-sensitive applications. In this paper, we present STLCG++, a masking-based approach that parallelizes STL robustness evaluation and backpropagation across timesteps, achieving more than 1000x faster computation time than the recurrent approach. We also introduce a smoothing technique for differentiability through time interval bounds, expanding STL's applicability in gradient-based optimization tasks over spatial and temporal variables. Finally, we demonstrate STLCG++'s benefits through three robotics use cases and provide open-source Python libraries in JAX and PyTorch for seamless integration into modern robotics workflows.
- Abstract(参考訳): Signal Temporal Logic (STL) は、ロボットシステムの時空間的挙動を特定し、推論するための簡潔で表現力豊かなフレームワークを提供する。
STLは、入力信号がSTL仕様を満足または違反する程度であるロバスト性の概念を認め、システム性能の微妙な評価を提供する。
特に、STLの堅牢性の違いは、軌道最適化やディープラーニングといった勾配に基づく最適化に依存するロボットワークフローへの直接的な統合を可能にする。
しかし、STLロバスト性の評価と差別化に対する既存のアプローチは、より長いシーケンスで効率が悪くなり、時間に敏感なアプリケーションでの使用を制限する再帰的な計算に依存している。
本稿では,STLCG++を提案する。STLのロバスト性評価とバックプロパゲーションを時間経過とともに並列化し,再帰的手法よりも1000倍以上高速な計算時間を実現する。
また、時間間隔境界による微分可能性のスムース化手法を導入し、空間的および時間的変数に対する勾配に基づく最適化タスクにおけるSTLの適用性を拡大する。
最後に、STLCG++の利点を3つのロボティクスユースケースを通じて実証し、モダンなロボティクスワークフローへのシームレスな統合のために、JAXとPyTorchでオープンソースのPythonライブラリを提供する。
関連論文リスト
- Constrained LTL Specification Learning from Examples [8.544277223210894]
制約学習と呼ばれる新しいタイプの学習問題を提案する。
肯定的な例と否定的な例に加えて、ユーザーは公式の特性に関する1つ以上の制約を指定できる。
実験により、ATLASは、最先端の学習ツールよりも優れた性能を保ちながら、新しいタイプの学習問題を解決することができることを示した。
論文 参考訳(メタデータ) (2024-12-03T23:15:27Z) - Regret-Free Reinforcement Learning for LTL Specifications [6.342676126028222]
強化学習は、未知のダイナミクスを持つシステムの最適制御ポリシーを学習するための有望な方法である。
現在のRLベースの手法は保証のみを提供しており、学習フェーズにおける過渡的なパフォーマンスについての洞察を与えていない。
マルコフ決定プロセス上の仕様の一般的なクラスに対処するコントローラを学習するための,最初の後悔のないオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-18T20:01:45Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - TLINet: Differentiable Neural Network Temporal Logic Inference [10.36033062385604]
本稿では,STL式を学習するニューラルネットワークシンボリックフレームワークであるTLINetを紹介する。
従来の手法とは対照的に,時間論理に基づく勾配法に特化して設計された最大演算子の近似法を導入する。
我々のフレームワークは、構造だけでなく、STL公式のパラメータも学習し、演算子と様々な論理構造の柔軟な組み合わせを可能にします。
論文 参考訳(メタデータ) (2024-05-03T16:38:14Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
我々は、大規模なSDPを解くための、証明可能な正確で高速でスケーラブルなアルゴリズムであるUnified Spectral Bundling with Sketching (USBS)を提案する。
USBSは、20億以上の決定変数を持つインスタンス上で、最先端のスケーラブルなSDP解決器よりも500倍のスピードアップを提供する。
論文 参考訳(メタデータ) (2023-12-19T02:27:22Z) - Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic [4.60607942851373]
システム実行から形式仕様を自動合成する問題を考察する。
時間論理式を合成するための古典的なアプローチの多くは、公式のサイズを最小化することを目的としている。
我々は,この概念を定式化し,有界な外見を持つ簡潔な公式を合成する学習アルゴリズムを考案する。
論文 参考訳(メタデータ) (2023-10-26T14:13:15Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Backpropagation through Signal Temporal Logic Specifications: Infusing
Logical Structure into Gradient-Based Methods [28.72161643908351]
本稿では,STLCG(Signal Temporal Logic)公式の定量的意味を計算グラフを用いて計算する手法を提案する。
STLは、連続系とハイブリッド系の両方で生成される信号の空間的および時間的特性を指定できる、強力で表現力のある形式言語である。
論文 参考訳(メタデータ) (2020-07-31T22:01:39Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。