論文の概要: EpiCoder: Encompassing Diversity and Complexity in Code Generation
- arxiv url: http://arxiv.org/abs/2501.04694v1
- Date: Wed, 08 Jan 2025 18:58:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:53.169181
- Title: EpiCoder: Encompassing Diversity and Complexity in Code Generation
- Title(参考訳): EpiCoder: コード生成における多様性と複雑さの回避
- Authors: Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, Scarlett Li,
- Abstract要約: 抽象構文木(AST)にヒントを得た新しい特徴木ベース合成フレームワークを提案する。
コードの構文構造をキャプチャするASTとは異なり、私たちのフレームワークはコード要素間のセマンティックな関係をモデル化します。
広く使われているベースモデルを微調整してEpiCoderシリーズを作成し、関数レベルとファイルレベルの両方で最先端のパフォーマンスを実現しました。
- 参考スコア(独自算出の注目度): 49.170195362149386
- License:
- Abstract: Effective instruction tuning is indispensable for optimizing code LLMs, aligning model behavior with user expectations and enhancing model performance in real-world applications. However, most existing methods focus on code snippets, which are limited to specific functionalities and rigid structures, restricting the complexity and diversity of the synthesized data. To address these limitations, we introduce a novel feature tree-based synthesis framework inspired by Abstract Syntax Trees (AST). Unlike AST, which captures syntactic structure of code, our framework models semantic relationships between code elements, enabling the generation of more nuanced and diverse data. The feature tree is constructed from raw data and refined iteratively to increase the quantity and diversity of the extracted features. This process enables the identification of more complex patterns and relationships within the code. By sampling subtrees with controlled depth and breadth, our framework allows precise adjustments to the complexity of the generated code, supporting a wide range of tasks from simple function-level operations to intricate multi-file scenarios. We fine-tuned widely-used base models to create the EpiCoder series, achieving state-of-the-art performance at both the function and file levels across multiple benchmarks. Notably, empirical evidence indicates that our approach shows significant potential in synthesizing highly complex repository-level code data. Further analysis elucidates the merits of this approach by rigorously assessing data complexity and diversity through software engineering principles and LLM-as-a-judge method.
- Abstract(参考訳): 効果的な命令チューニングは、LLMの最適化、ユーザの期待とモデル動作の整合化、実世界のアプリケーションにおけるモデル性能の向上に不可欠である。
しかし、既存のほとんどのメソッドは、特定の機能や構造に制限されたコードスニペットに焦点を当てており、合成データの複雑さと多様性を制限している。
これらの制約に対処するために,抽象構文木(AST)にヒントを得た,新しい機能木ベースの合成フレームワークを導入する。
コードの構文構造をキャプチャするASTとは異なり、私たちのフレームワークはコード要素間のセマンティックな関係をモデル化します。
特徴木は、原データから構築され、抽出された特徴量及び多様性を高めるために反復的に精製される。
このプロセスは、コード内のより複雑なパターンと関係を識別することを可能にする。
制御された深さと幅でサブツリーをサンプリングすることにより,生成したコードの複雑さを正確に調整し,単純な関数レベルの操作から複雑なマルチファイルシナリオまで,幅広いタスクをサポートする。
広く使われているベースモデルを微調整してEpiCoderシリーズを作成し、複数のベンチマークで関数レベルとファイルレベルの両方で最先端のパフォーマンスを実現した。
特に実証的な証拠は、我々のアプローチが高度に複雑なリポジトリレベルのコードデータを合成する大きな可能性を示唆している。
さらなる分析は、ソフトウェアエンジニアリングの原則とLCM-as-a-judgeメソッドを通じて、データの複雑さと多様性を厳格に評価することで、このアプローチのメリットを解明する。
関連論文リスト
- CodeSAM: Source Code Representation Learning by Infusing Self-Attention with Multi-Code-View Graphs [8.850533100643547]
我々は,複数のコードビューをトランスフォーマーベースモデルに注入する新しいフレームワークであるCodeSAMを提案する。
CodeSAMを使って、セマンティックコード検索、コードクローン検出、プログラム分類の下流SEタスクでCodeBERTのような小さな言語モデル(SLM)を微調整します。
論文 参考訳(メタデータ) (2024-11-21T22:24:47Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
本稿では,大規模言語モデルのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
論文 参考訳(メタデータ) (2024-07-29T20:42:59Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
大規模言語モデル(LLM)は因果的かつシーケンシャルな視点で入力コンテキストを処理する。
本稿では,コンテキスト構造化という新しい概念を提案する。
具体的には、平易で秩序のない文脈文を、適切に順序付けされ階層的に構造化された要素に変換する。
論文 参考訳(メタデータ) (2024-07-23T12:33:58Z) - Benchmarking Complex Instruction-Following with Multiple Constraints Composition [72.82640456309821]
大規模言語モデル(LLM)の複雑な命令追従能力の評価方法が重要な研究課題となっている。
既存のベンチマークは主に、異なる制約の構成を無視しながら、人間の指示で異なるタイプの制約をモデル化することに焦点を当てている。
複数の制約からなる複雑な命令に従うLLMの能力を総合的に評価するためのベンチマークである ComplexBench を提案する。
論文 参考訳(メタデータ) (2024-07-04T14:50:45Z) - A Multi-Expert Large Language Model Architecture for Verilog Code Generation [5.159745269633967]
本稿では,Verilog Code Generation (MEV-LLM) のための,革新的なマルチエキスパート LLM アーキテクチャを提案する。
我々のアーキテクチャは、複数のLCMを一意に統合しており、それぞれが、異なるレベルの設計複雑さに対して分類されたデータセットで微調整されている。
実験から得られた実証的な証拠は、構文的に、機能的に正しい生成したVerilog出力の比率において顕著な改善点を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-11T16:58:29Z) - SymbolicAI: A framework for logic-based approaches combining generative models and solvers [9.841285581456722]
生成過程における概念学習とフロー管理に論理的アプローチを取り入れた,汎用的でモジュール化されたフレームワークであるSybolicAIを紹介する。
我々は,大規模言語モデル(LLM)を,自然言語命令と形式言語命令の両方に基づいてタスクを実行する意味的解決器として扱う。
論文 参考訳(メタデータ) (2024-02-01T18:50:50Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - Execution-based Code Generation using Deep Reinforcement Learning [8.085533911328577]
PPOCoderは、事前訓練されたPLモデルとプロキシポリシー最適化を組み合わせた、コード生成のための新しいフレームワークである。
PPOCoderは、外部コード固有の知識をモデル最適化プロセスにシームレスに統合する。
PPOCoderはタスクに依存しない、モデルに依存しないフレームワークで、さまざまなコード生成タスクやPLで使用できます。
論文 参考訳(メタデータ) (2023-01-31T18:02:26Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。