論文の概要: A General Retrieval-Augmented Generation Framework for Multimodal Case-Based Reasoning Applications
- arxiv url: http://arxiv.org/abs/2501.05030v1
- Date: Thu, 09 Jan 2025 07:41:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:28.855528
- Title: A General Retrieval-Augmented Generation Framework for Multimodal Case-Based Reasoning Applications
- Title(参考訳): マルチモーダルケースベース推論のための一般検索型生成フレームワーク
- Authors: Ofir Marom,
- Abstract要約: Retrieval-Augmented Generation (RAG) を備えたLarge Language Models (LLM) は、CBRパイプラインのRetrieveおよびReuseステージをサポートすることができる。
本稿では,マルチモーダルCBRアプリケーションのための汎用RAGフレームワークMCBR-RAGを提案する。
単純化されたMath-24アプリケーションとより複雑なBackgammonアプリケーションを用いて,MCBR-RAGの有効性を実証する。
- 参考スコア(独自算出の注目度): 1.0334138809056097
- License:
- Abstract: Case-based reasoning (CBR) is an experience-based approach to problem solving, where a repository of solved cases is adapted to solve new cases. Recent research shows that Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) can support the Retrieve and Reuse stages of the CBR pipeline by retrieving similar cases and using them as additional context to an LLM query. Most studies have focused on text-only applications, however, in many real-world problems the components of a case are multimodal. In this paper we present MCBR-RAG, a general RAG framework for multimodal CBR applications. The MCBR-RAG framework converts non-text case components into text-based representations, allowing it to: 1) learn application-specific latent representations that can be indexed for retrieval, and 2) enrich the query provided to the LLM by incorporating all case components for better context. We demonstrate MCBR-RAG's effectiveness through experiments conducted on a simplified Math-24 application and a more complex Backgammon application. Our empirical results show that MCBR-RAG improves generation quality compared to a baseline LLM with no contextual information provided.
- Abstract(参考訳): ケースベースの推論(CBR)は、新しいケースを解決するために解決されたケースのリポジトリを適合させる、経験に基づく問題解決のアプローチである。
近年の研究では、LLM(Large Language Models)とRAG(Retrieval-Augmented Generation)がCBRパイプラインのRetrieveおよびReuseステージをサポートし、同様のケースを検索し、LLMクエリの追加コンテキストとして使用することが示されている。
ほとんどの研究はテキストのみの応用に焦点を合わせてきたが、実世界の多くの問題において、ケースの構成要素はマルチモーダルである。
本稿では,マルチモーダルCBRアプリケーションのための汎用RAGフレームワークMCBR-RAGを提案する。
MCBR-RAGフレームワークは、非テキストケースコンポーネントをテキストベースの表現に変換する。
1)検索のための索引付けが可能なアプリケーション固有の潜伏表現を学習し、
2) より良いコンテキストのためにすべてのケースコンポーネントを組み込むことで、LLMに提供されるクエリを豊かにする。
単純化されたMath-24アプリケーションとより複雑なBackgammonアプリケーションを用いて,MCBR-RAGの有効性を実証する。
実験の結果,MCBR-RAG は文脈情報を持たないベースライン LLM に比べて生成品質が向上することが示された。
関連論文リスト
- LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs - No Silver Bullet for LC or RAG Routing [70.35888047551643]
本稿では,RAGとLC LLMを厳格に比較するための新しいベンチマークであるLaRAを提案する。
LaRAは4つのQAタスクカテゴリと3種類の自然発生長文を対象とした2,326のテストケースを含んでいる。
RAGとLCの最適選択は,モデルのパラメータサイズ,長文機能,コンテキスト長,タスクタイプ,取得したチャンクの特性など,複雑な相互作用に依存する。
論文 参考訳(メタデータ) (2025-02-14T08:04:22Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG)は、検索ツールを利用して外部データベースにアクセスする。
既存のRAGシステムは主に簡単な質問応答タスクに有効である。
本稿では,MemoRAGを提案する。
論文 参考訳(メタデータ) (2024-09-09T13:20:31Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - CBR-RAG: Case-Based Reasoning for Retrieval Augmented Generation in LLMs for Legal Question Answering [1.0760413363405308]
Retrieval-Augmented Generation (RAG) は、入力のコンテキストとして事前知識を提供することで、Large Language Model (LLM) の出力を向上させる。
ケースベース推論(CBR)は、LLMにおけるRAGプロセスの一部として、構造検索を行う重要な機会を提供する。
我々は,CBRサイクルの初期検索段階,インデックス語彙,類似性知識コンテナを,文脈に関連のあるケースでLLMクエリを強化するために使用するCBR-RAGを紹介する。
論文 参考訳(メタデータ) (2024-04-04T21:47:43Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - T-RAG: Lessons from the LLM Trenches [7.545277950323593]
アプリケーションエリアは、民間企業文書に対する質問応答です。
Retrieval-Augmented Generationは、LLMベースのアプリケーションを構築するための最も顕著なフレームワークである。
Tree-RAG (T-RAG) と呼ばれるシステムは、エンティティ階層を表現するためにツリー構造を使用する。
論文 参考訳(メタデータ) (2024-02-12T08:45:08Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。