論文の概要: "Cause" is Mechanistic Narrative within Scientific Domains: An Ordinary Language Philosophical Critique of "Causal Machine Learning"
- arxiv url: http://arxiv.org/abs/2501.05844v1
- Date: Fri, 10 Jan 2025 10:36:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:54.053639
- Title: "Cause" is Mechanistic Narrative within Scientific Domains: An Ordinary Language Philosophical Critique of "Causal Machine Learning"
- Title(参考訳): カウセ」は科学領域における機械的ナラティブ:「カウサル機械学習」の日常言語哲学的批判
- Authors: Vyacheslav Kungurtsev, Leonardo Christov Moore, Gustav Sir, Martin Krutsky,
- Abstract要約: 因果学習は近年,AIの主要なテーマとして浮上している。
我々は、真の原因と効果現象を学習し、認識する認識論を考察する。
- 参考スコア(独自算出の注目度): 2.5782973781085383
- License:
- Abstract: Causal Learning has emerged as a major theme of AI in recent years, promising to use special techniques to reveal the true nature of cause and effect in a number of important domains. We consider the Epistemology of learning and recognizing true cause and effect phenomena. Through thought exercises on the customary use of the word ''cause'', especially in scientific domains, we investigate what, in practice, constitutes a valid causal claim. We recognize the word's uses across scientific domains in disparate form but consistent function within the scientific paradigm. We highlight fundamental distinctions of practice that can be performed in the natural and social sciences, highlight the importance of many systems of interest being open and irreducible and identify the important notion of Hermeneutic knowledge for social science inquiry. We posit that the distinct properties require that definitive causal claims can only come through an agglomeration of consistent evidence across multiple domains and levels of abstraction, such as empirical, physiological, biochemical, etc. We present Cognitive Science as an exemplary multi-disciplinary field providing omnipresent opportunity for such a Research Program, and highlight the main general modes of practice of scientific inquiry that can adequately merge, rather than place as incorrigibly conflictual, multi-domain multi-abstraction scientific practices and language games.
- Abstract(参考訳): 因果学習(Causal Learning)は近年,AIの主要なテーマとして現れ,さまざまな重要な領域における原因と効果の真の性質を明らかにするために,特別なテクニックを使用することを約束している。
我々は、真の原因と効果現象を学習し、認識する認識論を考察する。
科学分野における「なぜ」という言葉の慣用的使用に関する思考演習を通じて、実際に何が有効な因果的主張を構成するのかを調査する。
我々は、この単語が科学的な領域にまたがって異なる形態であるが、科学パラダイムの中で一貫した機能で使われていることを認識している。
我々は、自然科学と社会科学で実施できる実践の基本的な区別を強調し、多くの利害関係のシステムがオープンで理解不可能であることの重要性を強調し、社会科学調査におけるハーメニューティック知識の重要な概念を特定する。
我々は、決定的な因果的主張は、複数の領域にまたがる一貫した証拠と、経験、生理学、生化学などの抽象レベルを集約することでのみ得られると仮定する。
我々は,認知科学を,そのような研究プログラムの全体的機会を提供する,模範的な多分野の分野として提示し,矛盾のない多分野の多分野の科学的実践や言語ゲームとしてではなく,適切に統合可能な科学調査の実践の一般的な方法を強調した。
関連論文リスト
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Skews in the Phenomenon Space Hinder Generalization in Text-to-Image Generation [59.138470433237615]
本稿では,関係学習用データセットの言語的スキューと視覚的スクリューの両方を定量化する統計指標を提案する。
系統的に制御されたメトリクスは、一般化性能を強く予測できることを示す。
この研究は、データの多様性やバランスを向上し、絶対的なサイズをスケールアップするための重要な方向を示します。
論文 参考訳(メタデータ) (2024-03-25T03:18:39Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
因果発生理論は出現を定量化するために因果関係の尺度を用いる。
因果の出現を定量化し、データを識別する。
因果表現学習,因果モデル抽象化,世界モデルに基づく強化学習によって,因果表現の出現を識別するアーキテクチャが共有されることを強調した。
論文 参考訳(メタデータ) (2023-12-28T04:20:46Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Discovering Causal Relations and Equations from Data [23.802778299505288]
本稿では、物理学の幅広い分野における因果関係と方程式発見に関する概念、方法、および関連する研究について概説する。
我々は、観察因果関係と方程式発見のための分類法を提供し、接続を指摘し、ケーススタディの完全なセットを示します。
興奮する時間は、複雑なシステムに対する理解を改善するための多くの課題と機会に先立ちます。
論文 参考訳(メタデータ) (2023-05-21T19:22:50Z) - Causal Deep Learning [77.49632479298745]
因果性は、現実世界の問題を解決する方法を変える可能性がある。
しかし因果関係は、実際にテストできない重要な仮定を必要とすることが多い。
我々は、因果性に関する新しい考え方を提案します。
論文 参考訳(メタデータ) (2023-03-03T19:19:18Z) - Causality, Causal Discovery, and Causal Inference in Structural
Engineering [1.827510863075184]
本稿では,土木工学の観点からの因果発見と因果推論の事例を構築した。
具体的には、因果関係の鍵となる原理と、因果関係の発見と因果推論のための最も一般的なアルゴリズムとパッケージについて概説する。
論文 参考訳(メタデータ) (2022-04-04T14:49:47Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Towards Causal Representation Learning [96.110881654479]
機械学習とグラフィカル因果関係の2つの分野が生まれ、別々に発展した。
現在、他分野の進歩の恩恵を受けるために、クロスポリン化と両方の分野への関心が高まっている。
論文 参考訳(メタデータ) (2021-02-22T15:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。