論文の概要: Polarized Patterns of Language Toxicity and Sentiment of Debunking Posts on Social Media
- arxiv url: http://arxiv.org/abs/2501.06274v1
- Date: Fri, 10 Jan 2025 08:00:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:30:00.879124
- Title: Polarized Patterns of Language Toxicity and Sentiment of Debunking Posts on Social Media
- Title(参考訳): ソーシャルメディアにおける言語毒性の分極パターンと分散ポストの感性
- Authors: Wentao Xu, Wenlu Fan, Shiqian Lu, Tenghao Li, Bin Wang,
- Abstract要約: オンライン政治談話における偽情報や偽ニュースの出現は、民主的プロセスや公的な関与に重大な課題をもたらす。
われわれは8800万件のツイートと400万件以上のRedditのコメントを調査した。
本研究は, 談話におけるユーザエンゲージメントパターン, プラットフォームダイナミクス, 感情表現の重要性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 5.301808480190602
- License:
- Abstract: Here's a condensed 1920-character version: The rise of misinformation and fake news in online political discourse poses significant challenges to democratic processes and public engagement. While debunking efforts aim to counteract misinformation and foster fact-based dialogue, these discussions often involve language toxicity and emotional polarization. We examined over 86 million debunking tweets and more than 4 million Reddit debunking comments to investigate the relationship between language toxicity, pessimism, and social polarization in debunking efforts. Focusing on discussions of the 2016 and 2020 U.S. presidential elections and the QAnon conspiracy theory, our analysis reveals three key findings: (1) peripheral participants (1-degree users) play a disproportionate role in shaping toxic discourse, driven by lower community accountability and emotional expression; (2) platform mechanisms significantly influence polarization, with Twitter amplifying partisan differences and Reddit fostering higher overall toxicity due to its structured, community-driven interactions; and (3) a negative correlation exists between language toxicity and pessimism, with increased interaction reducing toxicity, especially on Reddit. We show that platform architecture affects informational complexity of user interactions, with Twitter promoting concentrated, uniform discourse and Reddit encouraging diverse, complex communication. Our findings highlight the importance of user engagement patterns, platform dynamics, and emotional expressions in shaping polarization in debunking discourse. This study offers insights for policymakers and platform designers to mitigate harmful effects and promote healthier online discussions, with implications for understanding misinformation, hate speech, and political polarization in digital environments.
- Abstract(参考訳): オンライン政治談話における偽情報や偽ニュースの出現は、民主的プロセスや公的な関与に重大な課題をもたらします。
デバンキングの取り組みは誤報に対処し、事実に基づく対話を促進することを目的としているが、これらの議論は言語毒性と感情的偏極を含むことが多い。
われわれは8800万件のツイートと400万件以上のRedditのコメントを調査し、言語毒性、悲観主義、そして分散努力における社会的分極の関係について調査した。
2016年と2020年のアメリカ合衆国大統領選挙とQAnon陰謀論の議論に焦点をあてて、分析の結果、1) 周囲の参加者(1度の利用者)は、コミュニティの説明責任と感情表現の低下によって有毒な談話を形成するのに不均衡な役割を担い、2) プラットフォームメカニズムは、偏極に大きく影響を与え、Twitterは、パルチザンの差異を増幅し、Redditは、その構造的、コミュニティ主導の相互作用により、より高い全体的な有毒性を育み、(3) 言語毒性と悲観主義の間に負の相関が存在し、特にRedditでは、相互作用が有害性を減少させる。
プラットフォームアーキテクチャはユーザインタラクションの複雑さに影響を与え,Twitterは集中的かつ均一な談話を促進し,Redditは多様な複雑なコミュニケーションを促進している。
本研究は, 談話におけるユーザエンゲージメントパターン, プラットフォームダイナミクス, 感情表現の重要性を浮き彫りにした。
この研究は、政策立案者やプラットフォーム設計者が有害な影響を軽減し、デジタル環境における誤った情報、憎しみの言葉、政治的偏見を理解するために、より健康的なオンライン議論を促進するための洞察を提供する。
関連論文リスト
- Exploring the topics, sentiments and hate speech in the Spanish information environment [0.0]
本研究は,スペインのメディア5社のニュースに対して,337,807件の回答メッセージ(サイトコメントとツイート)の話題,感情,憎悪の頻度について検討した。
コンテンツは主に陰性(62.7%)で中性(28.57%)で、低い陽性(8.73%)である。
低レベルのヘイトスピーチ(3.98%)にもかかわらず、この研究は社会や政治の話題に対するオンライン反応の毒性が高いことを確認している。
論文 参考訳(メタデータ) (2024-09-19T11:19:44Z) - Characterization of Political Polarized Users Attacked by Language Toxicity on Twitter [3.0367864044156088]
本研究は,左,右,センター利用者の言語毒性フローを初めて調査することを目的とする。
5億件以上のTwitter投稿が調査された。
その結果、左派ユーザーは右派やセンター派よりもはるかに有毒な回答が得られた。
論文 参考訳(メタデータ) (2024-07-17T10:49:47Z) - Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically Polarized Posts on Twitter [5.161088104035108]
個人レベルでの毒性と,Twitter/X上でのトピックレベルに寄与するパーシスタンスと感情分極が果たす役割について検討する。
43,151人のTwitter/Xユーザーから8960万のツイートを収集した後、パーティショニングを含むいくつかのアカウントレベルの特徴が、ユーザーが有害コンテンツを投稿する頻度を予測するかを決定する。
論文 参考訳(メタデータ) (2023-07-19T17:24:47Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Non-Polar Opposites: Analyzing the Relationship Between Echo Chambers
and Hostile Intergroup Interactions on Reddit [66.09950457847242]
Redditユーザーの5.97万人の活動と、13年間に投稿された421万人のコメントについて調査した。
我々は、ユーザーが互いに有害であるかどうかに基づいて、政治コミュニティ間の関係のタイプロジを作成する。
論文 参考訳(メタデータ) (2022-11-25T22:17:07Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
本研究では,アノテータのアイデンティティ(誰)と信念(なぜ)が有害な言語アノテーションに与える影響について検討する。
我々は、アンチブラック言語、アフリカ系アメリカ人の英語方言、俗語という3つの特徴を持つポストを考察する。
以上の結果から,アノテータのアイデンティティと信念と毒性評価の相関が強く示唆された。
論文 参考訳(メタデータ) (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Online Hate: Behavioural Dynamics and Relationship with Misinformation [0.0]
YouTubeビデオに100万以上のコメントが寄せられたコーパスでヘイトスピーチ検出を行います。
我々の結果は、ゴドウィンの法則に則って、オンラインの議論は、ますます有害な意見交換へと縮退する傾向にあることを示している。
論文 参考訳(メタデータ) (2021-05-28T17:30:51Z) - Analysing Social Media Network Data with R: Semi-Automated Screening of
Users, Comments and Communication Patterns [0.0]
ソーシャルメディアプラットフォーム上でのコミュニケーションは、社会に広まりつつある。
フェイクニュース、ヘイトスピーチ、急進的要素は、この現代的なコミュニケーションの一部です。
これらのメカニズムとコミュニケーションパターンの基本的な理解は、負のコミュニケーション形態に対抗するのに役立つ。
論文 参考訳(メタデータ) (2020-11-26T14:52:01Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。