論文の概要: Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
- arxiv url: http://arxiv.org/abs/2501.06408v2
- Date: Tue, 14 Jan 2025 04:30:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:29:31.400136
- Title: Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
- Title(参考訳): 反復アルゴリズムによる分布更新のためのJKOスキームの計算的および統計的漸近解析
- Authors: Shang Wu, Yazhen Wang,
- Abstract要約: ヨルダン、キンデレーア、オットーの論文は、現在広く知られているJKOスキームを導入した。
我々は、未知のパラメータを持つモデルに対応するために、JKOスキームを拡張した。
我々のフレームワークはパラメータ推定に使用されるサンプルサイズとアルゴリズムの反復回数の両方を無限にすることができる。
- 参考スコア(独自算出の注目度): 5.123598359938
- License:
- Abstract: The seminal paper of Jordan, Kinderlehrer, and Otto introduced what is now widely known as the JKO scheme, an iterative algorithmic framework for computing distributions. This scheme can be interpreted as a Wasserstein gradient flow and has been successfully applied in machine learning contexts, such as deriving policy solutions in reinforcement learning. In this paper, we extend the JKO scheme to accommodate models with unknown parameters. Specifically, we develop statistical methods to estimate these parameters and adapt the JKO scheme to incorporate the estimated values. To analyze the adopted statistical JKO scheme, we establish an asymptotic theory via stochastic partial differential equations that describes its limiting dynamic behavior. Our framework allows both the sample size used in parameter estimation and the number of algorithmic iterations to go to infinity. This study offers a unified framework for joint computational and statistical asymptotic analysis of the statistical JKO scheme. On the computational side, we examine the scheme's dynamic behavior as the number of iterations increases, while on the statistical side, we investigate the large-sample behavior of the resulting distributions computed through the scheme. We conduct numerical simulations to evaluate the finite-sample performance of the proposed methods and validate the developed asymptotic theory.
- Abstract(参考訳): Jordan、Kinderlehrer、Ottoのセミナー論文では、分散計算の反復的アルゴリズムフレームワークであるJKOスキームが紹介されている。
このスキームはワッサーシュタイン勾配流として解釈することができ、強化学習におけるポリシー解の導出など機械学習の文脈でうまく応用されている。
本稿では、未知パラメータを持つモデルに対応するために、JKOスキームを拡張した。
具体的には、これらのパラメータを推定し、JKOスキームを適用して推定値を組み込む統計的手法を開発する。
統計的 JKO スキームを解析するために,確率的偏微分方程式による漸近理論を構築し,その極限動的挙動を記述する。
我々のフレームワークはパラメータ推定に使用されるサンプルサイズとアルゴリズムの反復回数の両方を無限にすることができる。
本研究は、統計的JKOスキームの連立計算および統計的漸近解析のための統一的な枠組みを提供する。
計算面では,反復数の増加に伴うスキームの動的挙動について検討し,統計面では,結果の分布の大きなサンプル挙動について検討する。
本研究では,提案手法の有限サンプル性能を評価する数値シミュレーションを行い,その発展的漸近理論を検証した。
関連論文リスト
- Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
本稿では、可能性関数が解析的に利用できないモデルにおけるパラメータキャリブレーションの課題に対処する。
本稿では,最大推定と後続密度推定の両問題において,比バイアスの問題に対処するマルチタイムスケールを応用した勾配に基づくシミュレーションパラメータ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-20T02:46:15Z) - Elliptical Wishart distributions: information geometry, maximum likelihood estimator, performance analysis and statistical learning [7.499241611226476]
確率推定器(MLE)を演算する2つのアルゴリズムを提案する。
The $t$-Wishart distribution, the MLE and statistics learning algorithm are evaluation。
論文 参考訳(メタデータ) (2024-11-05T01:52:27Z) - On Policy Evaluation Algorithms in Distributional Reinforcement Learning [0.0]
分散強化学習(DRL)による政策評価問題における未知の回帰分布を効率的に近似する新しいアルゴリズムのクラスを導入する。
提案したアルゴリズムの単純な例では、ワッサーシュタインとコルモゴロフ-スミルノフ距離の両方において誤差境界を証明する。
確率密度関数を持つ戻り分布の場合、アルゴリズムはこれらの密度を近似し、誤差境界は上限ノルム内で与えられる。
論文 参考訳(メタデータ) (2024-07-19T10:06:01Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
本稿では,コミュニケーション効率に量子化を組み込んだ新しい階層型フェデレーション学習アルゴリズムを提案する。
最適性ギャップと収束率を評価するための包括的な分析フレームワークを提供する。
この結果から,本アルゴリズムはパラメータの範囲で常に高い学習精度を達成できることが判明した。
論文 参考訳(メタデータ) (2024-03-03T15:40:24Z) - Response Theory via Generative Score Modeling [0.0]
スコアベース生成モデルとGFDT(Generalized Fluctuation-Dissipation Theorem)を組み合わせた外部摂動に対する動的システムの応答解析手法を提案する。
この手法は,非ガウス統計を含むシステム応答の正確な推定を可能にする。
論文 参考訳(メタデータ) (2024-02-01T21:38:10Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
我々は、割引決定過程における政策評価の問題に対処し、生成モデルの下で、ll_infty$errorに対するマルコフに依存した保証を提供する。
我々は、ポリシー評価のために、局所ミニマックス下限の両漸近バージョンと非漸近バージョンを確立し、アルゴリズムを比較するためのインスタンス依存ベースラインを提供する。
論文 参考訳(メタデータ) (2020-03-16T17:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。