Deep Learning on Hester Davis Scores for Inpatient Fall Prediction
- URL: http://arxiv.org/abs/2501.06432v1
- Date: Sat, 11 Jan 2025 04:20:13 GMT
- Title: Deep Learning on Hester Davis Scores for Inpatient Fall Prediction
- Authors: Hojjat Salehinejad, Ricky Rojas, Kingsley Iheasirim, Mohammed Yousufuddin, Bijan Borah,
- Abstract summary: We propose two machine learning approaches for enhanced fall prediction.
One-step ahead fall prediction and sequence-to-point fall prediction.
We compare these approaches to assess their accuracy in fall risk prediction.
- Score: 7.454195840842691
- License:
- Abstract: Fall risk prediction among hospitalized patients is a critical aspect of patient safety in clinical settings, and accurate models can help prevent adverse events. The Hester Davis Score (HDS) is commonly used to assess fall risk, with current clinical practice relying on a threshold-based approach. In this method, a patient is classified as high-risk when their HDS exceeds a predefined threshold. However, this approach may fail to capture dynamic patterns in fall risk over time. In this study, we model the threshold-based approach and propose two machine learning approaches for enhanced fall prediction: One-step ahead fall prediction and sequence-to-point fall prediction. The one-step ahead model uses the HDS at the current timestamp to predict the risk at the next timestamp, while the sequence-to-point model leverages all preceding HDS values to predict fall risk using deep learning. We compare these approaches to assess their accuracy in fall risk prediction, demonstrating that deep learning can outperform the traditional threshold-based method by capturing temporal patterns and improving prediction reliability. These findings highlight the potential for data-driven approaches to enhance patient safety through more reliable fall prevention strategies.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
arXiv Detail & Related papers (2023-08-19T03:24:34Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
We intend to create a new risk assessment methodology that combines the best characteristics of both risk score and machine learning models.
The proposed approach achieved testing results identical to the standard LR, but offers superior interpretability and personalization.
The reliability estimation of individual predictions presented a great correlation with the misclassifications rate.
arXiv Detail & Related papers (2021-10-15T19:33:46Z) - Surrogate Assisted Semi-supervised Inference for High Dimensional Risk
Prediction [3.10560974227074]
We develop a surrogate assisted semi-supervised-learning (SAS) approach to risk modeling with high dimensional predictors.
We demonstrate that the SAS procedure provides valid inference for the predicted risk derived from a high dimensional working model.
arXiv Detail & Related papers (2021-05-04T03:08:51Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Dynamic prediction of time to event with survival curves [3.9169188005935927]
We apply our recently developed counterfactual dynamic survival model (CDSM) to static and longitudinal observational data.
We prove that the inflection point of its estimated individual survival curves provides reliable prediction of the patient failure time.
arXiv Detail & Related papers (2021-01-26T12:17:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks.
Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time.
Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric.
arXiv Detail & Related papers (2020-07-26T21:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.