The role of antisymmetric orbitals and electron-electron interactions on the two-particle spin and valley blockade in graphene double quantum dots
- URL: http://arxiv.org/abs/2501.06671v1
- Date: Sat, 11 Jan 2025 23:51:23 GMT
- Title: The role of antisymmetric orbitals and electron-electron interactions on the two-particle spin and valley blockade in graphene double quantum dots
- Authors: Samuel Möller, Luca Banszerus, Katrin Hecker, Hubert Dulisch, Kenji Watanabe, Takashi Taniguchi, Christian Volk, Christoph Stampfer,
- Abstract summary: We report on an experimental study of spin and valley blockade in two-electron bilayer graphene (BLG) double quantum dots (DQDs)
The results obtained from magnetotransport measurements on two-electron BLG DQDs, where the resonant tunneling transport involves both orbital symmetric and antisymmetric two-particle states, show a rich level spectrum.
We observe a magnetic field tunable spin and valley blockade, which is limited by the orbital splitting, the strength of the electron-electron interaction and the difference in the valley g-factors between the symmetric and antisymmetric twoparticle orbital states.
- Score: 0.1806830971023738
- License:
- Abstract: We report on an experimental study of spin and valley blockade in two-electron bilayer graphene (BLG) double quantum dots (DQDs) and explore the limits set by asymmetric orbitals and electronelectron interactions. The results obtained from magnetotransport measurements on two-electron BLG DQDs, where the resonant tunneling transport involves both orbital symmetric and antisymmetric two-particle states, show a rich level spectrum. We observe a magnetic field tunable spin and valley blockade, which is limited by the orbital splitting, the strength of the electron-electron interaction and the difference in the valley g-factors between the symmetric and antisymmetric twoparticle orbital states. Our conclusions are supported by simulations based on rate equations, which allow the identification of prominent interdot transitions associated with the transition from single to two-particle states observed in the experiment.
Related papers
- Protected Topological Nodal Ring Semimetal in Graphene [0.0]
We introduce a topological nodal ring semimetal in graphene with a quantized quantum Hall response.
The system may have applications in nano-electronics and in quantum mechanical entanglement applied to band theory.
arXiv Detail & Related papers (2022-11-09T15:15:39Z) - Half-mirror for electrons on quantum Hall copropagating edge channels [0.0]
A half-mirror divides a spin-polarized electron into two parallel copropagating spin-resolved quantum Hall edge channels.
The partition process was coherent, as confirmed by observing the Aharonov-Bohm oscillation at a high visibility of up to 60% in a Mach-Zehnder interferometer.
arXiv Detail & Related papers (2022-09-14T15:32:49Z) - Quantum phase transition in magnetic nanographenes on a lead
superconductor [21.166883497183687]
Quantum spins are proposed to host exotic interactions with superconductivity.
Magnetic nanographenes have been proven to host intrinsic quantum magnetism due to their negligible spin orbital coupling and crystal field splitting.
We fabricate three atomically precise nanographenes with the same magnetic ground state of spin S=1/2 on Pb (111) through engineering sublattice imbalance in graphene honeycomb lattice.
arXiv Detail & Related papers (2022-07-12T04:52:02Z) - Microscopic theory on magnetic-field-tuned sweet spot of exchange
interactions in multielectron quantum-dot systems [7.33811357166334]
We study a singlet-triplet qubit defined by four-electron states in the double-quantum-dot system.
We show that the exchange energy as a function of detuning can be non-monotonic, suggesting existence of sweet spots.
Our results suggest that a singlet-triplet qubit with more than two electrons can have advantages in the realization of quantum computing.
arXiv Detail & Related papers (2022-02-04T18:45:37Z) - Proposal for a cavity-induced measurement of the exchange coupling in quantum dots [0.0]
In spin qubit arrays the exchange coupling can be harnessed to implement two-qubit gates and to realize intermediate-range qubit connectivity along a spin bus.
We propose a scheme to characterize the exchange coupling between electrons in adjacent quantum dots.
arXiv Detail & Related papers (2022-02-01T22:34:29Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.