論文の概要: Efficient Event-based Delay Learning in Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2501.07331v1
- Date: Mon, 13 Jan 2025 13:44:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:28:04.335701
- Title: Efficient Event-based Delay Learning in Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークにおけるイベントベース遅延学習の効率化
- Authors: Balázs Mészáros, James C. Knight, Thomas Nowotny,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わるエネルギー効率の高い代替手段として注目を集めている。
遅延を伴うSNNのための新しいイベントベーストレーニング手法を提案する。
提案手法は,現在の時間的遅延学習手法のメモリの半分以下を用いており,最大26倍高速であることを示す。
- 参考スコア(独自算出の注目度): 0.1350479308585481
- License:
- Abstract: Spiking Neural Networks (SNNs) are attracting increased attention as a more energy-efficient alternative to traditional Artificial Neural Networks. Spiking neurons are stateful and intrinsically recurrent, making them well-suited for spatio-temporal tasks. However, this intrinsic memory is limited by synaptic and membrane time constants. A powerful additional mechanism are delays. In this paper, we propose a novel event-based training method for SNNs with delays, grounded in the EventProp formalism and enabling the calculation of exact gradients with respect to weights and delays. Our method supports multiple spikes per neuron and, to our best knowledge, is the first delay learning method applicable to recurrent connections. We evaluate our method on a simple sequence detection task, and the Yin-Yang, Spiking Heidelberg Digits and Spiking Speech Commands datasets, demonstrating that our algorithm can optimize delays from suboptimal initial conditions and enhance classification accuracy compared to architectures without delays. Finally, we show that our approach uses less than half the memory of the current state-of-the-art delay-learning method and is up to 26x faster.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークよりもエネルギー効率の高い代替品として注目を集めている。
スパイキングニューロンはステートフルで内在的に反復しており、時空間的タスクに適している。
しかし、この固有の記憶はシナプス時間と膜時間に制限される。
強力な追加メカニズムは遅延である。
本稿では,イベントプロップ形式に基礎を置き,重みと遅延に関する厳密な勾配の計算を可能にする,遅延のあるSNNのための新しいイベントベーストレーニング手法を提案する。
提案手法はニューロン毎の複数のスパイクをサポートし,我々の知る限り,リカレント接続に適用可能な最初の遅延学習法である。
簡単なシーケンス検出タスクとYin-Yang, Spiking Heidelberg Digits, Spiking Speech Commandsのデータセットを用いて,本アルゴリズムが最適初期条件からの遅延を最適化し,遅延のないアーキテクチャと比較して分類精度を向上させることを実証した。
最後に,提案手法は現在の最先端遅延学習手法のメモリの半分以下を使用し,最大26倍高速であることを示す。
関連論文リスト
- Canonic Signed Spike Coding for Efficient Spiking Neural Networks [7.524721345903027]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンのスパイキング行動を模倣し、ニューラルコンピューティングと人工知能の進歩において重要な役割を果たすと期待されている。
ANN(Artificial Neural Networks)からSNN(SNN)への変換は最も広く使われているトレーニング手法であり、その結果のSNNが大規模データセット上でANNと同等に動作することを保証する。
現在のスキームは、通常、スパイクカウントまたはタイピングのタイミングを使用しており、これはANNのアクティベーションと線形に関連しており、必要な時間ステップの数を増やす。
我々は新しいCanononic Signed Spike (CSS) 符号化を提案する。
論文 参考訳(メタデータ) (2024-08-30T12:39:25Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - Adaptive Axonal Delays in feedforward spiking neural networks for
accurate spoken word recognition [4.018601183900039]
スパイキングニューラルネットワーク(SNN)は、正確で効率的な自動音声認識システムを構築するための有望な研究手段である。
近年のオーディオ・ツー・スパイク符号化とトレーニングアルゴリズムの進歩により、SNNを実践的なタスクに適用することが可能になった。
本研究は,複雑な時間構造をもつタスクに対して,軸索遅延を訓練する可能性を示す。
論文 参考訳(メタデータ) (2023-02-16T22:19:04Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Axonal Delay As a Short-Term Memory for Feed Forward Deep Spiking Neural
Networks [3.985532502580783]
近年の研究では、学習過程において神経細胞の時間遅延が重要な役割を担っていることが判明している。
スパイクの正確なタイミングを設定することは、SNNにおける時間情報の伝達過程を理解し改善するための有望な方向である。
本稿では,教師付き学習に時間遅延を統合することの有効性を検証するとともに,短期記憶による軸索遅延を変調するモジュールを提案する。
論文 参考訳(メタデータ) (2022-04-20T16:56:42Z) - Spike-inspired Rank Coding for Fast and Accurate Recurrent Neural
Networks [5.986408771459261]
生物学的スパイクニューラルネットワーク(SNN)は、その出力の情報を時間的にエンコードすることができるが、人工ニューラルネットワーク(ANN)は従来はそうではない。
ここでは、SNNにインスパイアされたランク符号化(RC)のような時間符号化が、LSTMなどの従来のANNにも適用可能であることを示す。
RCトレーニングは推論中の時間と監視を著しく低減し、精度は最小限に抑えられる。
逐次分類の2つのおもちゃ問題と、最初の入力時間ステップ後にRCモデルが99.19%の精度を達成できる時間符号化MNISTデータセットにおいて、これらを実証する。
論文 参考訳(メタデータ) (2021-10-06T15:51:38Z) - Revisiting Batch Normalization for Training Low-latency Deep Spiking
Neural Networks from Scratch [5.511606249429581]
ディープラーニングの代替手段としてスパイキングニューラルネットワーク(SNN)が登場している。
スクラッチからの高精度で低遅延のSNNは、スパイキングニューロンの非分化性の性質に悩まされる。
本稿では、時間的SNNのトレーニングのための時間的バッチ正規化(BNTT)手法を提案する。
論文 参考訳(メタデータ) (2020-10-05T00:49:30Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。