論文の概要: Pairwise Comparisons without Stochastic Transitivity: Model, Theory and Applications
- arxiv url: http://arxiv.org/abs/2501.07437v1
- Date: Mon, 13 Jan 2025 16:05:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:28:36.221862
- Title: Pairwise Comparisons without Stochastic Transitivity: Model, Theory and Applications
- Title(参考訳): 確率的推移性のないペアワイズ比較:モデル,理論,応用
- Authors: Sze Ming Lee, Yunxiao Chen,
- Abstract要約: 遷移性の仮定を伴わないペアワイズ比較データに対する統計モデル群を提案する。
提案した推定器は、データの空間レベルに効果的に適応するミニマックスレート最適性を達成する。
- 参考スコア(独自算出の注目度): 2.4938353164011446
- License:
- Abstract: Most statistical models for pairwise comparisons, including the Bradley-Terry (BT) and Thurstone models and many extensions, make a relatively strong assumption of stochastic transitivity. This assumption imposes the existence of an unobserved global ranking among all the players/teams/items and monotone constraints on the comparison probabilities implied by the global ranking. However, the stochastic transitivity assumption does not hold in many real-world scenarios of pairwise comparisons, especially games involving multiple skills or strategies. As a result, models relying on this assumption can have suboptimal predictive performance. In this paper, we propose a general family of statistical models for pairwise comparison data without a stochastic transitivity assumption, substantially extending the BT and Thurstone models. In this model, the pairwise probabilities are determined by a (approximately) low-dimensional skew-symmetric matrix. Likelihood-based estimation methods and computational algorithms are developed, which allow for sparse data with only a small proportion of observed pairs. Theoretical analysis shows that the proposed estimator achieves minimax-rate optimality, which adapts effectively to the sparsity level of the data. The spectral theory for skew-symmetric matrices plays a crucial role in the implementation and theoretical analysis. The proposed method's superiority against the BT model, along with its broad applicability across diverse scenarios, is further supported by simulations and real data analysis.
- Abstract(参考訳): ブラッドリー・テリー (BT) やサーストーン (Thurstone) モデルや多くの拡張を含むペアワイズ比較の統計モデルは、確率的推移性(英語版)を比較的強く仮定する。
この仮定は、すべてのプレイヤー/チーム/イテムのうち、観測されていないグローバルランキングの存在と、グローバルランキングによってもたらされる比較確率に対する単調な制約を課している。
しかし、確率的推移性仮定はペア比較の現実的なシナリオの多く、特に複数のスキルや戦略を含むゲームには当てはまらない。
結果として、この仮定に依存するモデルは、最適以下の予測性能を持つことができる。
本稿では,BTモデルとThurstoneモデルを大幅に拡張した確率的推移性仮定を使わずに,ペア比較データに対する統計モデルの一般系を提案する。
このモデルでは、対の確率は(およそ)低次元のスキュー対称行列によって決定される。
観測されたペアの少ないスパースデータしか持たない同相推定法や計算アルゴリズムが開発されている。
理論的解析により,提案した推定器は最小値の最適性を達成し,データの空間レベルに効果的に適用できることが示唆された。
歪対称行列のスペクトル理論は、実装と理論解析において重要な役割を果たす。
提案手法のBTモデルに対する優位性は,様々なシナリオに適用可能であるとともに,シミュレーションや実データ解析によってさらに支持されている。
関連論文リスト
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
本研究の目的は分散ロバストな最適化 (DRO) 推定器の開発であり、特に多次元極値理論 (EVT) の統計量についてである。
点過程の空間における半パラメトリックな最大安定制約によって予測されるDRO推定器について検討した。
両手法は, 合成データを用いて検証し, 所定の特性を回復し, 提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-07-31T19:45:27Z) - Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking [21.23500484100963]
最適輸送の枠組みの下で, ほぼ優位性をスムーズなコストで評価する統計モデルを導入する。
また、Sinkhornアルゴリズムを用いた仮説テストフレームワークと効率的な実装を提案する。
複数のメトリクスで評価された大規模言語モデルの比較とベンチマークを行う方法について紹介する。
論文 参考訳(メタデータ) (2024-06-10T16:14:50Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Statistical inference for pairwise comparison models [5.487882744996216]
本稿では、ペアワイズ比較モデルの幅広いクラスにおいて、最大極大に対する準最適正規性を確立する。
鍵となる考え方は、フィッシャー情報行列を重み付きグラフラプラシアンとして同定することである。
論文 参考訳(メタデータ) (2024-01-16T16:14:09Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
シミュレータに基づく統計モデルに対する自由な推論は、機械学習と統計のコミュニティの両方において、関心の高まりを招いている。
本稿では、Jensen-Shannon- divergenceの計算特性を用いて、モデルパラメータに対する推定、仮説テスト、信頼区間の構築を可能にする理論的結果のセットを導出する。
このような近似はより集中的なアプローチの素早い代替手段であり、シミュレーターベースモデルの多種多様な応用には魅力的である。
論文 参考訳(メタデータ) (2022-05-22T18:00:13Z) - PSD Representations for Effective Probability Models [117.35298398434628]
最近提案された非負関数に対する正半定値(PSD)モデルがこの目的に特に適していることを示す。
我々はPSDモデルの近似と一般化能力の両方を特徴付け、それらが強い理論的保証を享受していることを示す。
本研究では,PSDモデルの密度推定,決定理論,推論への応用への道を開く。
論文 参考訳(メタデータ) (2021-06-30T15:13:39Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - A General Pairwise Comparison Model for Extremely Sparse Networks [5.298287413134346]
ネットワークの間隔が最小に近い条件下で、被検者の潜伏スコアベクトルの最大確率推定器が一様であることを示す。
この結果から, 大規模対比較ネットワークにおける推定における最大確率推定器の正当性が保証された。
論文 参考訳(メタデータ) (2020-02-20T16:39:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。