論文の概要: I Can Find You in Seconds! Leveraging Large Language Models for Code Authorship Attribution
- arxiv url: http://arxiv.org/abs/2501.08165v1
- Date: Tue, 14 Jan 2025 14:46:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:29.357670
- Title: I Can Find You in Seconds! Leveraging Large Language Models for Code Authorship Attribution
- Title(参考訳): 秒で見つけられる! コードオーサシップの属性に大規模言語モデルを活用する
- Authors: Soohyeon Choi, Yong Kiam Tan, Mark Huasong Meng, Mohamed Ragab, Soumik Mondal, David Mohaisen, Khin Mi Mi Aung,
- Abstract要約: State-of-the-art large language model (LLM)は、様々な言語でソースコードのオーサリングに成功している。
LLMは、悪質な攻撃に対する敵対的な堅牢性を示す。
本稿では,大規模属性に対するトーナメント方式のアプローチを提案する。
- 参考スコア(独自算出の注目度): 10.538442986619147
- License:
- Abstract: Source code authorship attribution is important in software forensics, plagiarism detection, and protecting software patch integrity. Existing techniques often rely on supervised machine learning, which struggles with generalization across different programming languages and coding styles due to the need for large labeled datasets. Inspired by recent advances in natural language authorship analysis using large language models (LLMs), which have shown exceptional performance without task-specific tuning, this paper explores the use of LLMs for source code authorship attribution. We present a comprehensive study demonstrating that state-of-the-art LLMs can successfully attribute source code authorship across different languages. LLMs can determine whether two code snippets are written by the same author with zero-shot prompting, achieving a Matthews Correlation Coefficient (MCC) of 0.78, and can attribute code authorship from a small set of reference code snippets via few-shot learning, achieving MCC of 0.77. Additionally, LLMs show some adversarial robustness against misattribution attacks. Despite these capabilities, we found that naive prompting of LLMs does not scale well with a large number of authors due to input token limitations. To address this, we propose a tournament-style approach for large-scale attribution. Evaluating this approach on datasets of C++ (500 authors, 26,355 samples) and Java (686 authors, 55,267 samples) code from GitHub, we achieve classification accuracy of up to 65% for C++ and 68.7% for Java using only one reference per author. These results open new possibilities for applying LLMs to code authorship attribution in cybersecurity and software engineering.
- Abstract(参考訳): ソースコードのオーサシップの属性は、ソフトウェア法医学、盗作検出、ソフトウェアパッチの完全性保護において重要である。
既存のテクニックは、大きなラベル付きデータセットを必要とするため、さまざまなプログラミング言語やコーディングスタイルの一般化に苦労する、教師付き機械学習に依存していることが多い。
本稿では,タスク固有のチューニングを伴わない例外的な性能を示す大規模言語モデル(LLM)を用いた自然言語オーサシップ解析の最近の進歩に触発され,ソースコードオーサシップの属性に対するLLMの使用について検討する。
本稿では,現在最先端のLLMが様々な言語でソースコードのオーサリングに成功できることを示す総合的研究について述べる。
LLMは、2つのコードスニペットが0ショットプロンプトで同じ著者によって書かれていて0.78のマシューズ相関係数(MCC)を達成することができる。
加えて、LSMは誤帰攻撃に対する敵対的な堅牢性を示す。
これらの機能にもかかわらず、入力トークンの制限により、LLMの素早いプロンプトは、多くの著者とうまく合っていないことが判明した。
そこで本研究では,大規模属性に対するトーナメント方式のアプローチを提案する。
GitHubのC++(500人の著者、26,355人のサンプル)とJava(686人の著者、55,267人のサンプル)のデータセットに対するこのアプローチを評価することで、C++では最大65%、Javaでは68.7%の分類精度を著者1人当たりの参照で達成した。
これらの結果は、サイバーセキュリティとソフトウェアエンジニアリングにおけるオーサシップの帰属にLLMを適用する新たな可能性を開く。
関連論文リスト
- A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
著者の属性は、文書の起源または著者を特定することを目的としている。
大きな言語モデル(LLM)とその深い推論能力と長距離テキストアソシエーションを維持する能力は、有望な代替手段を提供する。
IMDbおよびブログデータセットを用いた結果, 著者10名を対象に, 著者1名に対して, 85%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-29T04:14:23Z) - Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
本稿では,Large Language Models (LLM) をコードエグゼキュータとして探索する。
OpenAIのo1、GPT-4o、GPT-3.5、DeepSeek、Qwen-Coderなど、さまざまなLLMでこの実現可能性を調べています。
我々は,コードスニペットを行単位で処理し,弱いモデルの精度を平均7.22%向上させるIIP(Iterative Instruction Prompting)技術を導入する。
論文 参考訳(メタデータ) (2024-10-09T08:23:22Z) - Large Language Models for cross-language code clone detection [3.5202378300682162]
言語間のコードクローン検出は、ソフトウェアエンジニアリングコミュニティ内で注目を集めている。
機械学習の大幅な進歩にインスパイアされた本論文では、言語間コードクローン検出を再考する。
言語間コードクローンの識別のための5つの大言語モデル (LLM) と8つのプロンプト (08) の性能評価を行った。
論文 参考訳(メタデータ) (2024-08-08T12:57:14Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Assured LLM-Based Software Engineering [51.003878077888686]
この記事では,2024年4月15日にポルトガルのリスボンで開催された International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering で,Mark Harman 氏による基調講演の内容の概要を紹介する。
論文 参考訳(メタデータ) (2024-02-06T20:38:46Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
大規模言語モデル(LLM)は、高品質な人間によるテキストに非常に近い。
既存の検出ツールは、機械が生成したテキストと人間によるテキストしか区別できない。
本稿では,モデル固有,セキュア,効率的,拡張可能な検出ツールであるLLMDetを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。