PRESERVE: Prefetching Model Weights and KV-Cache in Distributed LLM Serving
- URL: http://arxiv.org/abs/2501.08192v2
- Date: Mon, 26 May 2025 07:30:17 GMT
- Title: PRESERVE: Prefetching Model Weights and KV-Cache in Distributed LLM Serving
- Authors: Ahmet Caner Yüzügüler, Jiawei Zhuang, Lukas Cavigelli,
- Abstract summary: Large language models (LLMs) are typically served from clusters of GPU/NPUs that consist of large number of devices.<n>Prior work addressed this issue by overlapping communication with compute, but has severe limitations due to the data dependencies between these operations.<n>We propose PRESERVE, a novel framework that prefetches model weights and KV-cache from off-chip memory to the on-chip cache of AI accelerators.
- Score: 2.7309692684728613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are typically served from clusters of GPUs/NPUs that consist of large number of devices. Unfortunately, communication between these devices incurs significant overhead, increasing the inference latency and cost while limiting the scalability. Prior work addressed this issue by overlapping communication with compute, but has severe limitations due to the data dependencies between these operations. In this paper, we propose PRESERVE, a novel framework that prefetches model weights and KV-cache from off-chip HBM memory to the on-chip cache of AI accelerators during the communication operations, which offers various advantages and performance improvements compared to prior methods. Through extensive experiments conducted on commercial AI accelerators, we demonstrate up to 1.6x end-to-end speedup on state-of-the-art, open-source LLMs. Additionally, we perform a design space exploration that identifies the optimal hardware configuration for the proposed method, showing a further 1.25x improvement in performance per cost by selecting the optimal L2 cache size. Our results show that PRESERVE has the potential to mitigate the memory bottlenecks and communication overheads, offering a solution to improve the performance and scalability of the LLM inference systems.
Related papers
- IAM: Efficient Inference through Attention Mapping between Different-scale LLMs [74.81417160018856]
IAM framework achieves dual benefits of accelerated attention computation and reduced KV cache usage.<n>We show that IAM can accelerate prefill by 15% and reduce KV cache usage by 22.1% without appreciably sacrificing performance.
arXiv Detail & Related papers (2025-07-16T06:39:11Z) - Hybrid Systolic Array Accelerator with Optimized Dataflow for Edge Large Language Model Inference [8.475319961845903]
Edge accelerator should achieve high area efficiency and minimize external memory access.<n>This paper proposes an edge LLM inference accelerator featuring a hybrid systolic array architecture.<n>Our solution achieves 247/117 (token/s/mm2) while running a 1.3B LLM on long-input/long-output scenarios.
arXiv Detail & Related papers (2025-07-11T20:27:30Z) - L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference [6.886434948681708]
Large Language Models (LLMs) increasingly require processing long text sequences, but GPU memory limitations force difficult trade-offs between memory capacity and bandwidth.<n>We identify that the critical memory bottleneck lies in the decoding phase of multi-head attention.<n>We propose L3, a hardware-software co-designed system integrating DIMM-PIM and GPU devices.
arXiv Detail & Related papers (2025-04-24T14:14:07Z) - Accelerating LLM Inference Throughput via Asynchronous KV Cache Prefetching [12.993197799897532]
Large Language Models (LLMs) exhibit pronounced memory-bound characteristics during inference due to High Bandwidth Memory (HBM) bandwidth constraints.
We propose an L2 Cache-oriented asynchronous KV Cache prefetching method to break through the memory bandwidth bottleneck in LLM inference through computation-load overlap.
arXiv Detail & Related papers (2025-04-08T09:17:35Z) - Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference [49.77734021302196]
We propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework.<n>To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features.<n>Results show that TOFC achieves up to 60% reduction in data transmission overhead and 50% reduction in system latency.
arXiv Detail & Related papers (2025-03-17T08:37:22Z) - Cost-Optimal Grouped-Query Attention for Long-Context LLMs [64.90662568387683]
Building effective Transformer-based large language models (LLMs) has recently become a research focus.
We compare models with different parameter sizes, context lengths, and attention head configurations in terms of model performance, computational cost, and memory cost.
Our studies show that, when processing sufficiently long sequences, a larger model with fewer attention heads can achieve a lower loss while incurring lower computational and memory costs.
arXiv Detail & Related papers (2025-03-12T17:50:42Z) - COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs [81.01082659623552]
Large Language Models (LLMs) have demonstrated remarkable success across various domains.
Their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit.
arXiv Detail & Related papers (2025-02-24T18:42:19Z) - A Universal Framework for Compressing Embeddings in CTR Prediction [68.27582084015044]
We introduce a Model-agnostic Embedding Compression (MEC) framework that compresses embedding tables by quantizing pre-trained embeddings.<n>Our approach consists of two stages: first, we apply popularity-weighted regularization to balance code distribution between high- and low-frequency features.<n> Experiments on three datasets reveal that our method reduces memory usage by over 50x while maintaining or improving recommendation performance.
arXiv Detail & Related papers (2025-02-21T10:12:34Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs [0.8217552831952]
Large language models (LLMs) have transformed the way we think about language understanding and generation.<n>Group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process.<n>We present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions.
arXiv Detail & Related papers (2024-12-23T03:44:29Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
Large language models (LLMs) have been widely applied but face challenges in efficient inference.
We introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization.
We implement an arbitrary precision matrix multiplication scheme that decomposes and recovers at the bit level, enabling flexible precision.
arXiv Detail & Related papers (2024-09-26T14:17:58Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - InstInfer: In-Storage Attention Offloading for Cost-Effective Long-Context LLM Inference [10.115950753431528]
Large Language Models (LLMs) are a significant milestone in generative AI.
The increasing context length and batch size in offline LLM inference escalates the memory requirement of the key-value (KV) cache.
Several cost-effective solutions leverage host memory or optimized to reduce storage costs for offline inference scenarios.
We propose InstInfer, which offloads the most performance-critical computation (i.e., attention in decoding phase) and data (i.e., KV cache) parts to Computational Storage Drives (CSDs)
InstInfer improves throughput for long-sequence inference by
arXiv Detail & Related papers (2024-09-08T06:06:44Z) - Efficient Large Foundation Models Design: A Perspective From Model and System Co-Design [34.12187517908856]
This paper focuses on modern efficient training and inference technologies on foundation models.<n>Model and System Design optimize training and inference from different aspects to save computational resources.
arXiv Detail & Related papers (2024-09-03T15:35:01Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications.
We conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems.
We then propose ScaleLLM, an optimized system for resource-efficient LLM serving.
arXiv Detail & Related papers (2024-07-23T23:37:29Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Inference Performance Optimization for Large Language Models on CPUs [4.7230692120532485]
Large language models (LLMs) have shown exceptional performance and vast potential across diverse tasks.
When GPU hardware resources are limited, we can explore alternative options on CPUs.
In this paper, we introduce an easily deployable inference performance optimization solution aimed at accelerating LLMs on CPUs.
arXiv Detail & Related papers (2024-07-10T01:53:49Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
We propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs)
The Efficient Attention Skipping (EAS) method evaluates the attention redundancy and skips the less important MHAs to speed up inference.
The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed.
arXiv Detail & Related papers (2024-03-22T14:20:34Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
We propose the In-context Autoencoder (ICAE) to compress a long context into short compact memory slots.
ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data.
arXiv Detail & Related papers (2023-07-13T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.