論文の概要: ForestProtector: An IoT Architecture Integrating Machine Vision and Deep Reinforcement Learning for Efficient Wildfire Monitoring
- arxiv url: http://arxiv.org/abs/2501.09926v1
- Date: Fri, 17 Jan 2025 02:47:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:42.142738
- Title: ForestProtector: An IoT Architecture Integrating Machine Vision and Deep Reinforcement Learning for Efficient Wildfire Monitoring
- Title(参考訳): ForestProtector: 効率的な山火事モニタリングのためのマシンビジョンと深層強化学習を統合したIoTアーキテクチャ
- Authors: Kenneth Bonilla-Ormachea, Horacio Cuizaga, Edwin Salcedo, Sebastian Castro, Sergio Fernandez-Testa, Misael Mamani,
- Abstract要約: 森林火災の早期発見は、それらが引き起こす環境と社会経済の被害を最小限に抑えるために重要である。
既存の火災検知システムは高価であり、人的介入を必要とすることが多く、大規模地域の継続的な監視は実行不可能である。
本研究は、コンピュータビジョン機能を備えた中央ゲートウェイ装置を用いて、遠距離における煙の360度視野をモニタする低コスト森林火災検知システムを提案する。
- 参考スコア(独自算出の注目度): 0.9423257767158634
- License:
- Abstract: Early detection of forest fires is crucial to minimizing the environmental and socioeconomic damage they cause. Indeed, a fire's duration directly correlates with the difficulty and cost of extinguishing it. For instance, a fire burning for 1 minute might require 1 liter of water to extinguish, while a 2-minute fire could demand 100 liters, and a 10-minute fire might necessitate 1,000 liters. On the other hand, existing fire detection systems based on novel technologies (e.g., remote sensing, PTZ cameras, UAVs) are often expensive and require human intervention, making continuous monitoring of large areas impractical. To address this challenge, this work proposes a low-cost forest fire detection system that utilizes a central gateway device with computer vision capabilities to monitor a 360{\deg} field of view for smoke at long distances. A deep reinforcement learning agent enhances surveillance by dynamically controlling the camera's orientation, leveraging real-time sensor data (smoke levels, ambient temperature, and humidity) from distributed IoT devices. This approach enables automated wildfire monitoring across expansive areas while reducing false positives.
- Abstract(参考訳): 森林火災の早期発見は、それらが引き起こす環境と社会経済の被害を最小限に抑えるために重要である。
実際、火災の期間は、消火の困難さとコストと直接関係している。
例えば、1分間の火災は消火に1リットルの水を要し、2分間の火災は100リットル、そして10分間の火災は1000リットルを必要とする。
一方、新しい技術(リモートセンシング、PTZカメラ、UAV)に基づく既存の火災検知システムは、しばしば高価であり、人的介入を必要とするため、大規模地域の継続的な監視は不可能である。
この課題に対処するために、コンピュータビジョン機能を備えた中央ゲートウェイ装置を用いて、長距離煙の360{\deg}視野をモニタする低コストの森林火災検知システムを提案する。
深層強化学習エージェントは、分散IoTデバイスからのリアルタイムセンサデータ(煙レベル、環境温度、湿度)を活用することにより、カメラの向きを動的に制御することで監視を強化する。
このアプローチは、偽陽性を低減しつつ、拡張領域を横断する自動山火事監視を可能にする。
関連論文リスト
- CamLoPA: A Hidden Wireless Camera Localization Framework via Signal Propagation Path Analysis [59.86280992504629]
CamLoPAは、トレーニング不要の無線カメラ検出およびローカライゼーションフレームワークである。
低コストの商用オフ・ザ・シェルフ(COTS)デバイスを使用して、最小限の活動空間制約で運用する。
95.37%のスヌーピングカメラ検出精度と17.23の平均位置誤差を達成する。
論文 参考訳(メタデータ) (2024-09-23T16:23:50Z) - Detecting Wildfires on UAVs with Real-time Segmentation Trained by Larger Teacher Models [0.0]
森林火災の早期発見は、大規模な火災が大規模な環境、構造、社会的な被害をもたらすのを防ぐために不可欠である。
遠隔地では、高帯域幅の移動ネットワークが欠如しているため、検出方法はオンボード計算に限られている。
本研究では,境界ボックスラベルのみを用いて,小さなセグメンテーションモデルを訓練する方法を示す。
論文 参考訳(メタデータ) (2024-08-19T11:42:54Z) - A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
本研究は、アメリカ合衆国における山火事の検出および対処のための積極的な方法を検討する。
本研究の目的は,高度技術を用いた山火事の予防的検出と防止である。
AI対応のリモートセンシングや5Gベースのアクティブモニタリングなど、さまざまな方法により、アクティブな山火事の検出と管理が強化される。
論文 参考訳(メタデータ) (2024-02-27T04:09:30Z) - Multimodal Wildland Fire Smoke Detection [5.15911752972989]
研究によると、気候変動によって温暖な温度と乾燥状態が生まれ、長い山火事の季節と米国の山火事のリスクが増大する。
スモーキーネット(SmokeyNet)は,森林火災の煙を検出するための時間的情報を用いた深層学習モデルである。
SmokeyNetは、ほんの数分の時間で自動早期通知システムとして機能し、破壊的な山火事との戦いに有用なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T01:16:06Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
この研究は、AIが火災を検出し、認識し、画像ストリーム上のオブジェクト検出を使用して検出時間を短縮する可能性を検討する。
そこで我々は, YOLOv4オブジェクト検出器をベースとした複数のモデルのトレーニングと評価に使用されてきた複数の公開情報源から, 適切なデータを収集, ラベル付けした。
論文 参考訳(メタデータ) (2022-12-09T11:32:36Z) - Image-based Early Detection System for Wildfires [2.8494271563126676]
森林火災は土地の被害、財産の喪失、大気汚染、さらには人命の喪失を引き起こす破壊的な現象である。
本稿では,機械学習を用いて山火事の煙を高精度に検出するWildfire Detection and Alertシステムを提案する。
私たちの技術は現在、米国内で毎日何百ものカメラから送られてくるデータを監視するために使われています。
論文 参考訳(メタデータ) (2022-11-03T07:38:30Z) - Drone Detection and Tracking in Real-Time by Fusion of Different Sensing
Modalities [66.4525391417921]
マルチセンサ・ドローン検知システムの設計と評価を行う。
われわれのソリューションは、魚眼カメラを統合し、空の広い部分を監視し、他のカメラを興味ある対象に向けて操縦する。
このサーマルカメラは、たとえこのカメラが解像度が低いとしても、ビデオカメラと同じくらい実現可能なソリューションであることが示されている。
論文 参考訳(メタデータ) (2022-07-05T10:00:58Z) - FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time
Wildland Fire Smoke Detection [0.0]
Fire Ignition Library (FIgLib) は、25,000点近い山火事の煙画像のデータセットである。
SmokeyNetは、リアルタイムの山火事煙検知にカメラ画像からの時間情報を利用する、新しいディープラーニングアーキテクチャである。
FIgLibデータセットでトレーニングすると、SmokeyNetは同等のベースラインを上回り、人間のパフォーマンスに匹敵する。
論文 参考訳(メタデータ) (2021-12-16T03:49:58Z) - STCNet: Spatio-Temporal Cross Network for Industrial Smoke Detection [52.648906951532155]
本稿では,産業用煙排出ガスを識別する新しい時空間クロスネットワーク(STCNet)を提案する。
提案するSTCNetは, テクスチャの特徴を抽出する空間的特徴と, 煙の動き情報を捕捉する時間的経路を含む。
STCNetは、RISE産業煙検知データセットにおいて、最も優れた競合相手に対して6.2%の精度で明確な改善を実現していることを示す。
論文 参考訳(メタデータ) (2020-11-10T02:28:47Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
熱赤外カメラは、ドローン検出タスクに対する実現可能な解決策であることが示されている。
また,センサ間距離の関数としての検出器性能についても検討した。
ドローン、鳥、飛行機、ヘリコプターの650個の注釈付き赤外線と可視ビデオを含む新しいビデオデータセットも紹介されている。
論文 参考訳(メタデータ) (2020-07-14T23:06:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。