論文の概要: Temporal Graph MLP Mixer for Spatio-Temporal Forecasting
- arxiv url: http://arxiv.org/abs/2501.10214v1
- Date: Fri, 17 Jan 2025 14:13:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:16.082916
- Title: Temporal Graph MLP Mixer for Spatio-Temporal Forecasting
- Title(参考訳): 時空間予測のための時間グラフMLPミキサ
- Authors: Muhammad Bilal, Luis Carretero Lopez,
- Abstract要約: T-GMM (Temporal Graph-Mixer) は、データ不足に対処するために設計されたアーキテクチャである。
モデルはノードレベルの処理とサブグラフエンコーディングを組み合わせて、局所化された空間依存をキャプチャする。
AQI、ENGRAD、PV-US、METR-LAデータセットの実験では、大きな欠落したデータが存在する場合でも、モデルが効果的に予測できることが示されている。
- 参考スコア(独自算出の注目度): 1.5696662871407674
- License:
- Abstract: Spatiotemporal forecasting is critical in applications such as traffic prediction, climate modeling, and environmental monitoring. However, the prevalence of missing data in real-world sensor networks significantly complicates this task. In this paper, we introduce the Temporal Graph MLP-Mixer (T-GMM), a novel architecture designed to address these challenges. The model combines node-level processing with patch-level subgraph encoding to capture localized spatial dependencies while leveraging a three-dimensional MLP-Mixer to handle temporal, spatial, and feature-based dependencies. Experiments on the AQI, ENGRAD, PV-US and METR-LA datasets demonstrate the model's ability to effectively forecast even in the presence of significant missing data. While not surpassing state-of-the-art models in all scenarios, the T-GMM exhibits strong learning capabilities, particularly in capturing long-range dependencies. These results highlight its potential for robust, scalable spatiotemporal forecasting.
- Abstract(参考訳): 時空間予測は交通予測、気候モデリング、環境モニタリングなどの応用において重要である。
しかし、現実のセンサネットワークにおける欠落したデータの頻度は、このタスクを著しく複雑にしている。
本稿では,これらの課題に対処するための新しいアーキテクチャであるテンポラルグラフMLP-Mixer(T-GMM)を紹介する。
このモデルは、ノードレベルの処理とパッチレベルのサブグラフエンコーディングを組み合わせて、局所化された空間依存をキャプチャし、時間的、空間的、特徴ベースの依存関係を処理するために3次元のMLP-Mixerを活用する。
AQI、ENGRAD、PV-US、METR-LAデータセットの実験は、重要な欠落データが存在する場合でも、モデルを効果的に予測する能力を示している。
T-GMMはあらゆるシナリオにおいて最先端のモデルを超えないが、特に長距離依存のキャプチャにおいて、強力な学習能力を示す。
これらの結果は、堅牢でスケーラブルな時空間予測の可能性を強調している。
関連論文リスト
- System States Forecasting of Microservices with Dynamic Spatio-Temporal Data [9.519440926598524]
現在の予測手法は、関係が重要となる環境では不十分である。
短期および長期の予測タスクでは,MAE(Mean Absolute Error)の8.6%削減,MSE(Mean Squared Error)の2.2%削減を達成した。
論文 参考訳(メタデータ) (2024-08-15T02:52:02Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
RPMixer と呼ばれる全MLP時系列予測アーキテクチャを提案する。
提案手法は,各ブロックがアンサンブルモデルにおいてベース学習者のように振る舞う深層ニューラルネットワークのアンサンブル的挙動に乗じる。
論文 参考訳(メタデータ) (2024-02-16T07:28:59Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
実世界の環境では、センサーの故障やデータ転送エラーなどの問題により、そのようなデータには欠落する要素がしばしば含まれる。
時間的計算の目的は、観測された時系列における固有の空間的および時間的関係を理解することによって、これらの欠落値を推定することである。
伝統的に、複雑な時間的計算は特定のアーキテクチャに依存しており、適用可能性の制限と高い計算複雑性に悩まされている。
対照的に、我々のアプローチは、事前訓練された大規模言語モデル(LLM)を複雑な時間的インプットに統合し、画期的なフレームワークであるGATGPTを導入している。
論文 参考訳(メタデータ) (2023-11-24T08:15:11Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。