Over-the-Air Multi-Sensor Inference with Neural Networks Using Memristor-Based Analog Computing
- URL: http://arxiv.org/abs/2501.10245v1
- Date: Fri, 17 Jan 2025 15:14:58 GMT
- Title: Over-the-Air Multi-Sensor Inference with Neural Networks Using Memristor-Based Analog Computing
- Authors: Busra Tegin, Muhammad Atif Ali, Tolga M Duman,
- Abstract summary: This study proposes a multi-sensor wireless inference system with memristor-based analog computing.
Given the sensors' limited computational capabilities, the features from the network's front end are transmitted to a central device.
We also introduce a trainable over-the-air sensor fusion method based on $L_p$-norm inspired combining function.
- Score: 13.5346836945515
- License:
- Abstract: Deep neural networks provide reliable solutions for many classification and regression tasks; however, their application in real-time wireless systems with simple sensor networks is limited due to high energy consumption and significant bandwidth needs. This study proposes a multi-sensor wireless inference system with memristor-based analog computing. Given the sensors' limited computational capabilities, the features from the network's front end are transmitted to a central device where an $L_p$-norm inspired approximation of the maximum operation is employed to achieve transformation-invariant features, enabling efficient over-the-air transmission. We also introduce a trainable over-the-air sensor fusion method based on $L_p$-norm inspired combining function that customizes sensor fusion to match the network and sensor distribution characteristics, enhancing adaptability. To address the energy constraints of sensors, we utilize memristors, known for their energy-efficient in-memory computing, enabling analog-domain computations that reduce energy use and computational overhead in edge computing. This dual approach of memristors and $L_p$-norm inspired sensor fusion fosters energy-efficient computational and transmission paradigms and serves as a practical energy-efficient solution with minimal performance loss.
Related papers
- A Fully Hardware Implemented Accelerator Design in ReRAM Analog Computing without ADCs [5.6496088684920345]
ReRAM-based accelerators process neural networks via analog Computing-in-Memory (CiM) for ultra-high energy efficiency.
This work explores the hardware implementation of the Sigmoid and SoftMax activation functions of neural networks with crossbarally binarized neurons.
We propose a complete ReRAM-based Analog Computing Accelerator (RACA) that accelerates neural network computation by leveraging inferenceally binarized neurons.
arXiv Detail & Related papers (2024-12-27T09:38:19Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.
embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.
split computing - where an SNN is partitioned across two devices - is a promising solution.
This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Conditional Gumbel-Softmax for constrained feature selection with application to node selection in wireless sensor networks [48.536059764418454]
We introduce Conditional Gumbel-Softmax as a method to perform end-to-end learning of the optimal subset for a given task.
We demonstrate how this approach can be used to select the task-optimal nodes composing a wireless sensor network.
arXiv Detail & Related papers (2024-06-03T09:55:56Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Low-power event-based face detection with asynchronous neuromorphic
hardware [2.0774873363739985]
We present the first instance of an on-chip spiking neural network for event-based face detection deployed on the SynSense Speck neuromorphic chip.
We show how to reduce precision discrepancies between off-chip clock-driven simulation used for training and on-chip event-driven inference.
We achieve an on-chip face detection mAP[0.5] of 0.6 while consuming only 20 mW.
arXiv Detail & Related papers (2023-12-21T19:23:02Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - A Deep Reinforcement Learning-based Adaptive Charging Policy for
Wireless Rechargeable Sensor Networks [14.67786743033424]
Wireless power transfer technology is emerging as a reliable solution for energizing the sensors.
We propose a novel adaptive charging scheme using a deep reinforcement learning (DRL) approach.
Our model can adapt to spontaneous changes in the network topology.
arXiv Detail & Related papers (2022-08-16T16:10:52Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Memory Organization for Energy-Efficient Learning and Inference in
Digital Neuromorphic Accelerators [0.4030910640265943]
Energy efficiency of neuromorphic hardware is greatly affected by the energy storing, accessing, and updating synaptic parameters.
We introduce functional encoding for structured connectivity such as the connectivity in convolutional layers.
For a 2 layer spiking neural network trained to retain atemporal-temporal pattern, bitmap (PB-BMP) based organization can encode the sparse networks more efficiently.
arXiv Detail & Related papers (2020-03-05T19:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.