論文の概要: The Mathematics of Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2501.10465v1
- Date: Wed, 15 Jan 2025 15:00:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:12.427291
- Title: The Mathematics of Artificial Intelligence
- Title(参考訳): 人工知能の数学
- Authors: Gabriel Peyré,
- Abstract要約: 本稿では,人工知能(AI)における数学の役割について概説する。
数学はAIシステムをよりよく理解し、拡張するためのツールを提供する、と強調する。
逆に、AIは新しい問題を提起し、様々な分野の交差点で新しい数学の開発を進める。
- 参考スコア(独自算出の注目度): 23.03787751696068
- License:
- Abstract: This overview article highlights the critical role of mathematics in artificial intelligence (AI), emphasizing that mathematics provides tools to better understand and enhance AI systems. Conversely, AI raises new problems and drives the development of new mathematics at the intersection of various fields. This article focuses on the application of analytical and probabilistic tools to model neural network architectures and better understand their optimization. Statistical questions (particularly the generalization capacity of these networks) are intentionally set aside, though they are of crucial importance. We also shed light on the evolution of ideas that have enabled significant advances in AI through architectures tailored to specific tasks, each echoing distinct mathematical techniques. The goal is to encourage more mathematicians to take an interest in and contribute to this exciting field.
- Abstract(参考訳): この記事では、人工知能(AI)における数学の重要な役割を強調し、数学がAIシステムをよりよく理解し、拡張するためのツールを提供する、と強調する。
逆に、AIは新しい問題を提起し、様々な分野の交差点で新しい数学の開発を進める。
本稿では、ニューラルネットワークアーキテクチャをモデル化し、その最適化をよりよく理解するための分析的および確率的ツールの適用に焦点を当てる。
統計的問題(特にこれらのネットワークの一般化能力)は、決定的に重要であるが、意図的に設定されている。
私たちはまた、特定のタスクに合わせたアーキテクチャを通じて、AIの大幅な進歩を可能にするアイデアの進化にも光を当てました。
目標は、より多くの数学者が興味を持ち、このエキサイティングな分野に貢献することを奨励することである。
関連論文リスト
- AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - What Students Can Learn About Artificial Intelligence -- Recommendations
for K-12 Computing Education [0.0]
デジタルトランスフォーメーションの文脈における技術進歩は、人工知能(AI)分野における急速な発展の基礎である
AIのトピックを含むように、コンピュータサイエンスカリキュラムの数が増えている。
本稿では,デジタルリテラシーと社会的視点に対処する学習目的のカリキュラムを提案する。
論文 参考訳(メタデータ) (2023-05-10T20:39:43Z) - Mathematics, word problems, common sense, and artificial intelligence [0.0]
本稿では,基本知識とコモンセンス推論を組み合わせた単語問題の解法として,現在の人工知能(AI)技術の能力と限界について論じる。
我々は、AI自然言語技術を用いて開発されている3つのアプローチについてレビューする。
純粋な数学的研究のためのAI技術を開発する上で、このような制限が重要であるかどうかは明らかではない、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-23T21:21:39Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
本章では,数学教育(ME)のデジタルツールとして使用されているAIシステムの概要を紹介する。
それはAIと機械学習(ML)の研究者を対象としており、教育アプリケーションで使われている特定の技術に光を当てています。
論文 参考訳(メタデータ) (2021-07-13T12:09:10Z) - Measuring Mathematical Problem Solving With the MATH Dataset [55.4376028963537]
12,500の競合数学問題のデータセットであるMATHを紹介する。
各問題には、答えの導出と説明を生成するためのモデルを教えるために使用できる完全なステップバイステップソリューションがあります。
また、モデルに数学の基礎を教えるための補助的事前学習データセットも提供します。
論文 参考訳(メタデータ) (2021-03-05T18:59:39Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。