論文の概要: Mathematics, word problems, common sense, and artificial intelligence
- arxiv url: http://arxiv.org/abs/2301.09723v2
- Date: Wed, 25 Jan 2023 01:24:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-26 12:00:10.938698
- Title: Mathematics, word problems, common sense, and artificial intelligence
- Title(参考訳): 数学、単語問題、常識、人工知能
- Authors: Ernest Davis
- Abstract要約: 本稿では,基本知識とコモンセンス推論を組み合わせた単語問題の解法として,現在の人工知能(AI)技術の能力と限界について論じる。
我々は、AI自然言語技術を用いて開発されている3つのアプローチについてレビューする。
純粋な数学的研究のためのAI技術を開発する上で、このような制限が重要であるかどうかは明らかではない、と我々は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper discusses the capacities and limitations of current artificial
intelligence (AI) technology to solve word problems that combine elementary
knowledge with commonsense reasoning. No existing AI systems can solve these
reliably. We review three approaches that have been developed, using AI natural
language technology: outputting the answer directly, outputting a computer
program that solves the problem, and outputting a formalized representation
that can be input to an automated theorem verifier. We review some benchmarks
that have been developed to evaluate these systems and some experimental
studies. We discuss the limitations of the existing technology at solving these
kinds of problems. We argue that it is not clear whether these kinds of
limitations will be important in developing AI technology for pure mathematical
research, but that they will be important in applications of mathematics, and
may well be important in developing programs capable of reading and
understanding mathematical content written by humans.
- Abstract(参考訳): 本稿では,基本知識とコモンセンス推論を組み合わせた単語問題を解くために,現在の人工知能(AI)技術の能力と限界について論じる。
既存のAIシステムは、これらを確実に解決できない。
我々は、ai自然言語技術を用いて開発された3つのアプローチをレビューする: 解を直接出力し、問題を解くコンピュータプログラムを出力し、自動定理検証器に入力可能な形式化された表現を出力する。
これらのシステムを評価するために開発されたベンチマークと実験的研究についてレビューする。
このような問題を解決する上で、既存の技術の限界について論じる。
我々は、これらの制限が純粋に数学研究のためのai技術を開発する上で重要であるかどうかは明らかでないが、数学の応用において重要であり、人間が書いた数学的内容を読み書きできるプログラムを開発する上で重要であると論じている。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Cognition is All You Need -- The Next Layer of AI Above Large Language
Models [0.0]
我々は,大規模言語モデル以外のニューロシンボリック認知のためのフレームワークであるCognitive AIを紹介する。
我々は、認知AIがAGIのようなAI形態の進化に必須の先駆者であり、AGIは独自の確率論的アプローチでは達成できないと主張する。
我々は、大規模言語モデル、AIの採用サイクル、および商用の認知AI開発に関する議論で締めくくります。
論文 参考訳(メタデータ) (2024-03-04T16:11:57Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
デジタルハードウェアは、最適化、ディープラーニング、微分方程式に関する問題の解決に本質的に制約されていることを示す。
対照的に、Blum-Shub-Smale マシンのようなアナログコンピューティングモデルは、これらの制限を克服する可能性を示している。
論文 参考訳(メタデータ) (2023-07-03T19:10:45Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
本章では,数学教育(ME)のデジタルツールとして使用されているAIシステムの概要を紹介する。
それはAIと機械学習(ML)の研究者を対象としており、教育アプリケーションで使われている特定の技術に光を当てています。
論文 参考訳(メタデータ) (2021-07-13T12:09:10Z) - Exploring the Nuances of Designing (with/for) Artificial Intelligence [0.0]
我々は,AIの設計において,アルゴリズムと社会の問題に同時に対処する手段として,インフラストラクチャの構築について検討する。
アルゴリズム的なソリューションも、純粋にヒューマニズム的なソリューションも、AIの狭い状態において完全に望ましくない結果をもたらすには十分ではない。
論文 参考訳(メタデータ) (2020-10-22T20:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。