論文の概要: An Interpretable Measure for Quantifying Predictive Dependence between Continuous Random Variables -- Extended Version
- arxiv url: http://arxiv.org/abs/2501.10815v1
- Date: Sat, 18 Jan 2025 16:25:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:13.143502
- Title: An Interpretable Measure for Quantifying Predictive Dependence between Continuous Random Variables -- Extended Version
- Title(参考訳): 連続乱数変数間の予測依存性の定量化のための解釈可能な尺度 -- 拡張版
- Authors: Renato Assunção, Flávio Figueiredo, Francisco N. Tinoco Júnior, Léo M. de Sá-Freire, Fábio Silva,
- Abstract要約: 連続変数 $X$ と $Y$ の関連度を評価する新しい尺度を導入する。
この尺度の重要な利点は、その解釈可能性である。
我々は,90,000以上の実・合成データセットを用いて測定結果の評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A fundamental task in statistical learning is quantifying the joint dependence or association between two continuous random variables. We introduce a novel, fully non-parametric measure that assesses the degree of association between continuous variables $X$ and $Y$, capable of capturing a wide range of relationships, including non-functional ones. A key advantage of this measure is its interpretability: it quantifies the expected relative loss in predictive accuracy when the distribution of $X$ is ignored in predicting $Y$. This measure is bounded within the interval [0,1] and is equal to zero if and only if $X$ and $Y$ are independent. We evaluate the performance of our measure on over 90,000 real and synthetic datasets, benchmarking it against leading alternatives. Our results demonstrate that the proposed measure provides valuable insights into underlying relationships, particularly in cases where existing methods fail to capture important dependencies.
- Abstract(参考訳): 統計的学習における基本的な課題は、2つの連続確率変数間の結合依存または関連を定量化することである。
連続変数の関連度を$X$と$Y$で評価し、非機能変数を含む幅広い関係を捉えることができる新しい非パラメトリック測度を導入する。
この尺度の重要な利点は、その解釈可能性である:$X$の分布が$Y$の予測で無視されるときに予測された相対損失を予測精度で定量化する。
この測度は区間 [0,1] 内で有界であり、$X$ と $Y$ が独立である場合に限り 0 に等しい。
我々は、90,000以上の実データと合成データを用いて測定結果の評価を行い、主要な代替データと比較した。
提案手法は,特に既存手法が重要な依存関係を捕捉できない場合に,基礎となる関係に関する貴重な知見を提供することを示す。
関連論文リスト
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Uncertainty in Language Models: Assessment through Rank-Calibration [65.10149293133846]
言語モデル(LM)は、自然言語生成において有望な性能を示している。
与えられた入力に応答する際の不確実性を正確に定量化することは重要である。
我々は、LMの確実性と信頼性を評価するために、Rank$-$Calibration$と呼ばれる斬新で実用的なフレームワークを開発する。
論文 参考訳(メタデータ) (2024-04-04T02:31:05Z) - Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear Models [4.675899216825188]
本稿では,間隔化同時信頼区間という,同時信頼区間の概念を提案する。
我々の区間は、区間の上と下の境界の一部が 0 に切り替わるという意味でスパースである。
提案手法は様々な選択手順と組み合わせることができるため,不確実性を比較するのに最適である。
論文 参考訳(メタデータ) (2023-07-14T18:37:57Z) - Policy evaluation from a single path: Multi-step methods, mixing and
mis-specification [45.88067550131531]
無限水平$gamma$-discounted Markov rewardプロセスの値関数の非パラメトリック推定について検討した。
カーネルベースの多段階時間差推定の一般的なファミリーに対して、漸近的でない保証を提供する。
論文 参考訳(メタデータ) (2022-11-07T23:15:25Z) - Revealing Unobservables by Deep Learning: Generative Element Extraction
Networks (GEEN) [5.3028918247347585]
本稿では,ランダムサンプル中の潜伏変数$X*$を推定する新しい手法を提案する。
我々の知る限りでは、この論文は観測においてそのような識別を初めて提供するものである。
論文 参考訳(メタデータ) (2022-10-04T01:09:05Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - Neural Methods for Point-wise Dependency Estimation [129.93860669802046]
我々は,2つの結果が共起する確率を定量的に測定する点依存度(PD)の推定に焦点をあてる。
提案手法の有効性を,1)MI推定,2)自己教師付き表現学習,3)クロスモーダル検索タスクで示す。
論文 参考訳(メタデータ) (2020-06-09T23:26:15Z) - Estimation of Accurate and Calibrated Uncertainties in Deterministic
models [0.8702432681310401]
我々は,決定論的予測を確率論的予測に変換する手法を考案した。
そのためには,そのようなモデルの精度と信頼性(校正)を損なう必要がある。
隠れたノイズを正確に回収できる合成データと、大規模な実世界のデータセットの両方について、いくつかの例を示す。
論文 参考訳(メタデータ) (2020-03-11T04:02:56Z) - Optimal rates for independence testing via $U$-statistic permutation
tests [7.090165638014331]
独立分布と同一分布のペアが$sigma$-finiteで分離可能な測度空間で値を取る独立性テストの問題について検討する。
最初に、独立性の有効なテストはなく、$f: D(f) geq rho2 $ という形の代替と一様に一致していることを示す。
論文 参考訳(メタデータ) (2020-01-15T19:04:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。