論文の概要: Optimal rates for independence testing via $U$-statistic permutation
tests
- arxiv url: http://arxiv.org/abs/2001.05513v2
- Date: Fri, 6 Nov 2020 11:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 06:58:44.387795
- Title: Optimal rates for independence testing via $U$-statistic permutation
tests
- Title(参考訳): U$-statistic permutation testによる独立テストの最適レート
- Authors: Thomas B. Berrett, Ioannis Kontoyiannis, Richard J. Samworth
- Abstract要約: 独立分布と同一分布のペアが$sigma$-finiteで分離可能な測度空間で値を取る独立性テストの問題について検討する。
最初に、独立性の有効なテストはなく、$f: D(f) geq rho2 $ という形の代替と一様に一致していることを示す。
- 参考スコア(独自算出の注目度): 7.090165638014331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of independence testing given independent and
identically distributed pairs taking values in a $\sigma$-finite, separable
measure space. Defining a natural measure of dependence $D(f)$ as the squared
$L^2$-distance between a joint density $f$ and the product of its marginals, we
first show that there is no valid test of independence that is uniformly
consistent against alternatives of the form $\{f: D(f) \geq \rho^2 \}$. We
therefore restrict attention to alternatives that impose additional
Sobolev-type smoothness constraints, and define a permutation test based on a
basis expansion and a $U$-statistic estimator of $D(f)$ that we prove is
minimax optimal in terms of its separation rates in many instances. Finally,
for the case of a Fourier basis on $[0,1]^2$, we provide an approximation to
the power function that offers several additional insights. Our methodology is
implemented in the R package USP.
- Abstract(参考訳): 独立および同一に分散したペアが$\sigma$-finiteで分離可能な測度空間で値を取る独立性テストの問題を考察する。
依存の自然な測度として$D(f)$を、結合密度$f$とその辺の積の間の正方形の$L^2$-距離として定義すると、まず独立性の有効なテストはなく、$\{f: D(f) \geq \rho^2 \}$の形式に一様に一致することを示す。
したがって、追加のソボレフ型滑らかさ制約を課す代替品への注意を制限し、基底展開に基づく置換テストと、多くの例において分離率の観点からミニマックス最適であることが証明された$d(f)$のu$統計推定器を定義する。
最後に、$[0,1]^2$ のフーリエ基底の場合、いくつかの洞察を与えるパワー関数に近似を与える。
我々の手法はRパッケージUSPで実装されている。
関連論文リスト
- Testing Identity of Distributions under Kolmogorov Distance in Polylogarithmic Space [1.2277343096128712]
本稿では、ストリーミング設定において、空間$O(log4 varepsilon-1)$を使用するアルゴリズムを提供する。
また、私たちは9つの関連するオープンな問題を述べ、それと関連した問題への関心を喚起することを望んでいます。
論文 参考訳(メタデータ) (2024-10-29T15:24:27Z) - A Conditional Independence Test in the Presence of Discretization [14.917729593550199]
既存のテストメソッドは、離散化された観察しかできない場合、機能しない。
このような離散化の存在に対応するために特別に設計された条件付き独立テストを提案する。
論文 参考訳(メタデータ) (2024-04-26T18:08:15Z) - On Ranking-based Tests of Independence [0.0]
2つの確率変数 $mathbfX$ と $mathbfY$ の独立性をテストするための新しい非パラメトリックフレームワークを開発する。
我々は、ROC空間の対角線から逸脱して独立性テストを構築する様々な方法を含む幅広い階級統計を考察する。
論文 参考訳(メタデータ) (2024-03-12T10:00:00Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
この研究は、平均報酬マルコフ決定過程(AMDP)における$varepsilon$-Optimal Policyを得る際のサンプルの複雑さを考察する。
我々は、状態-作用対当たりの$widetilde O(H varepsilon-3 ln frac1delta)$サンプルを証明し、$H := sp(h*)$は任意の最適ポリシーのバイアスのスパンであり、$varepsilon$は精度、$delta$は失敗確率である。
論文 参考訳(メタデータ) (2022-12-01T15:57:58Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - An $\ell^p$-based Kernel Conditional Independence Test [21.689461247198388]
そこで本稿では, 最適分布の2つのカーネルベース代表者間の距離を$Lp$とする, 条件付き独立性のための計算効率の高い新しいテストを提案する。
我々は,新しい試験の性能が,高次元設定においても,統計的パワーとタイプI誤差の両方の観点から,最先端の手法よりも優れていることを示す一連の実験を行った。
論文 参考訳(メタデータ) (2021-10-28T03:18:27Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
i. i. d.
形式 $Z = (1-epsilon) X + epsilon B$ の分布からのサンプル。ここで $X$ はゼロ平均で未知の共分散である Gaussian $mathcalN(0, Sigma)$ である。
汚染がない場合、事前の研究は、$O(d)$サンプルを使用するこの仮説テストタスクの単純なテスターを与えた。
サンプル複雑性の上限が $omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma であることを証明します。
論文 参考訳(メタデータ) (2020-12-31T18:24:41Z) - Dimension-agnostic inference using cross U-statistics [33.17951971728784]
本稿では,サンプル分割と自己正規化とともに,既存のテスト統計の変分表現を用いた手法を提案する。
結果の統計学は、縮退したU統計を慎重に修正し、対角ブロックを落とし、対角ブロックを外したままにすると見なすことができる。
論文 参考訳(メタデータ) (2020-11-10T12:21:34Z) - Optimal Testing of Discrete Distributions with High Probability [49.19942805582874]
高確率状態に着目して離散分布を試験する問題について検討する。
一定の要素でサンプル最適である近接性および独立性テストのための最初のアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-14T16:09:17Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z) - Locally Private Hypothesis Selection [96.06118559817057]
我々は、$mathcalQ$から$p$までの総変動距離が最良の分布に匹敵する分布を出力する。
局所的な差分プライバシーの制約は、コストの急激な増加を引き起こすことを示す。
提案アルゴリズムは,従来手法のラウンド複雑性を指数関数的に改善する。
論文 参考訳(メタデータ) (2020-02-21T18:30:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。