論文の概要: Survey on Monocular Metric Depth Estimation
- arxiv url: http://arxiv.org/abs/2501.11841v1
- Date: Tue, 21 Jan 2025 02:51:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:22:24.869862
- Title: Survey on Monocular Metric Depth Estimation
- Title(参考訳): 単分子メートル法深度推定に関する調査
- Authors: Jiuling Zhang,
- Abstract要約: 本稿では,幾何に基づく手法から最先端のディープラーニングアプローチへの進化に注目し,深度推定技術について概説する。
ゼロショットMMDE研究の最近の進歩は、モデル一般化やシーン境界における詳細の喪失といった課題に焦点をあてて検討されている。
- 参考スコア(独自算出の注目度): 0.9790236766474202
- License:
- Abstract: Monocular Depth Estimation (MDE) is a fundamental computer vision task underpinning applications such as spatial understanding, 3D reconstruction, and autonomous driving. While deep learning-based MDE methods can predict relative depth from a single image, their lack of metric scale information often results in scale inconsistencies, limiting their utility in downstream tasks like visual SLAM, 3D reconstruction, and novel view synthesis. Monocular Metric Depth Estimation (MMDE) addresses these challenges by enabling precise, scene-scale depth inference. MMDE improves depth consistency, enhances sequential task stability, simplifies integration into downstream applications, and broadens practical use cases. This paper provides a comprehensive review of depth estimation technologies, highlighting the evolution from geometry-based methods to state-of-the-art deep learning approaches. It emphasizes advancements in scale-agnostic methods, which are crucial for enabling zero-shot generalization as the foundational capability for MMDE. Recent progress in zero-shot MMDE research is explored, focusing on challenges such as model generalization and the loss of detail at scene boundaries. Innovative strategies to address these issues include unlabelled data augmentation, image patching, architectural optimization, and generative techniques. These advancements, analyzed in detail, demonstrate significant contributions to overcoming existing limitations. Finally, this paper synthesizes recent developments in zero-shot MMDE, identifies unresolved challenges, and outlines future research directions. By offering a clear roadmap and cutting-edge insights, this work aims to deepen understanding of MMDE, inspire novel applications, and drive technological innovation.
- Abstract(参考訳): 単眼深度推定(MDE)は、空間的理解、3次元再構成、自律運転などの応用を支える基本的なコンピュータビジョンタスクである。
深層学習に基づくMDE法は、単一の画像から相対的な深度を予測できるが、メトリックスケール情報の欠如は、しばしばスケールの不整合をもたらし、視覚SLAMや3D再構成、新しいビュー合成といった下流タスクにおける有用性を制限している。
モノクロメートル深度推定(MMDE)は、正確なシーンスケールの深度推定を可能にすることでこれらの課題に対処する。
MMDEは、深さの一貫性を改善し、シーケンシャルなタスク安定性を高め、下流アプリケーションへの統合を単純化し、実用的なユースケースを広げます。
本稿では,幾何に基づく手法から最先端のディープラーニングアプローチへの進化を概観した,深度推定技術の総合的なレビューを行う。
MMDEの基本的な能力としてゼロショットの一般化を可能にするために重要なスケールに依存しない手法の進歩を強調している。
ゼロショットMMDE研究の最近の進歩は、モデル一般化やシーン境界における詳細の喪失といった課題に焦点をあてて検討されている。
これらの問題に対処するイノベーティブな戦略としては、ラベルのないデータ拡張、画像パッチ、アーキテクチャ最適化、生成技術などがある。
これらの進歩は、詳細に分析され、既存の制限を克服するための重要な貢献を示している。
最後に,ゼロショットMMDEにおける最近の展開を整理し,未解決課題を特定し,今後の研究方向性を概説する。
明確なロードマップと最先端の洞察を提供することで、MMDEの理解を深め、新しいアプリケーションを刺激し、技術革新を促進することを目指している。
関連論文リスト
- MetricGold: Leveraging Text-To-Image Latent Diffusion Models for Metric Depth Estimation [9.639797094021988]
MetricGoldは、生成拡散モデルの豊富な先行値を利用して、メートル法深さ推定を改善する新しいアプローチである。
我々の実験は、多様なデータセットをまたいだ堅牢な一般化を実証し、よりシャープで高品質なメートル法深さ推定を導出する。
論文 参考訳(メタデータ) (2024-11-16T20:59:01Z) - Self-Supervised Depth Completion Guided by 3D Perception and Geometry
Consistency [17.68427514090938]
本稿では,3次元の知覚的特徴と多視点幾何整合性を利用して,高精度な自己監督深度補完法を提案する。
NYU-Depthv2 と VOID のベンチマークデータセットを用いた実験により,提案モデルが最先端の深度補完性能を実現することを示す。
論文 参考訳(メタデータ) (2023-12-23T14:19:56Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - Depth Estimation Matters Most: Improving Per-Object Depth Estimation for
Monocular 3D Detection and Tracking [47.59619420444781]
検出・追跡を含む単眼的3D知覚へのアプローチは、LiDARベースの手法と比較して性能が劣ることが多い。
本稿では,オブジェクト(トラックレット)の複数のフレームに異なる表現(RGBと擬似LiDAR)と時間情報を組み合わせた多層融合手法を提案する。
論文 参考訳(メタデータ) (2022-06-08T03:37:59Z) - Deep Depth Completion: A Survey [26.09557446012222]
我々は、読者が研究動向をよりよく把握し、現在の進歩を明確に理解するのに役立つ総合的な文献レビューを提供する。
ネットワークアーキテクチャ,損失関数,ベンチマークデータセット,学習戦略の設計面から,関連する研究について検討する。
室内および屋外のデータセットを含む,広く使用されている2つのベンチマークデータセットに対して,モデル性能の定量的比較を行った。
論文 参考訳(メタデータ) (2022-05-11T08:24:00Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
単眼画像から人間のポーズと形状を推定することは、コンピュータビジョンにおける長年の問題である。
本調査は, 単分子型3次元メッシュ回収の課題に焦点を当てた。
論文 参考訳(メタデータ) (2022-03-03T18:56:08Z) - Unsupervised Single-shot Depth Estimation using Perceptual
Reconstruction [0.0]
この研究は、生成ニューラルネットワークの分野における最新の進歩を示し、それらを活用して完全に教師なしの単発深度合成を行う。
RGB-to-deepthとdeep-to-RGB転送用の2つのジェネレータを実装し,Wasserstein-1距離と新しい知覚再構成項を用いて同時に最適化した。
本研究で得られた成果は、実世界のアプリケーションにおいて、教師なし単発深度推定の大きな可能性を示している。
論文 参考訳(メタデータ) (2022-01-28T15:11:34Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3次元物体検出は、運転支援システムなどの様々な実用用途で必要とされる重要な機能である。
双眼視やLiDARに頼っている従来の設定に比べて、経済的な解決策として単眼3D検出が注目されているが、それでも満足のいく結果が得られていない。
本稿ではまず,この問題に関する系統的研究を行い,現在の単分子3次元検出問題をインスタンス深度推定問題として単純化できることを考察する。
論文 参考訳(メタデータ) (2021-07-29T16:30:33Z) - Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep
Learning Perspective [69.44384540002358]
この問題に対処するための包括的で包括的な2D-to-3D視点を提供する。
2014年からの主流とマイルストーンのアプローチを統一フレームワークで分類しています。
また,ポーズ表現スタイル,ベンチマーク,評価指標,一般的なアプローチの定量的評価を要約した。
論文 参考訳(メタデータ) (2021-04-23T11:07:07Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
カラービデオから多フレーム深度を推定する新しい学習手法を提案する。
本手法は深度推定精度において最先端の手法より優れる。
論文 参考訳(メタデータ) (2020-04-02T07:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。