Implementation of an Asymmetric Adjusted Activation Function for Class Imbalance Credit Scoring
- URL: http://arxiv.org/abs/2501.12285v1
- Date: Tue, 21 Jan 2025 16:54:39 GMT
- Title: Implementation of an Asymmetric Adjusted Activation Function for Class Imbalance Credit Scoring
- Authors: Xia Li, Hanghang Zheng, Kunpeng Tao, Mao Mao,
- Abstract summary: Credit scoring is a systematic approach to evaluate a borrower's probability of default (PD) on a bank loan.
The data associated with such scenarios are characteristically imbalanced, complicating binary classification.
We introduce an innovative yet straightforward optimized activation function by incorporating an IR-dependent asymmetric adjusted factor embedded Sigmoid activation function.
- Score: 4.032608240950855
- License:
- Abstract: Credit scoring is a systematic approach to evaluate a borrower's probability of default (PD) on a bank loan. The data associated with such scenarios are characteristically imbalanced, complicating binary classification owing to the often-underestimated cost of misclassification during the classifier's learning process. Considering the high imbalance ratio (IR) of these datasets, we introduce an innovative yet straightforward optimized activation function by incorporating an IR-dependent asymmetric adjusted factor embedded Sigmoid activation function (ASIG). The embedding of ASIG makes the sensitive margin of the Sigmoid function auto-adjustable, depending on the imbalance nature of the datasets distributed, thereby giving the activation function an asymmetric characteristic that prevents the underrepresentation of the minority class (positive samples) during the classifier's learning process. The experimental results show that the ASIG-embedded-classifier outperforms traditional classifiers on datasets across wide-ranging IRs in the downstream credit-scoring task. The algorithm also shows robustness and stability, even when the IR is ultra-high. Therefore, the algorithm provides a competitive alternative in the financial industry, especially in credit scoring, possessing the ability to effectively process highly imbalanced distribution data.
Related papers
- Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach [0.0]
Support vector machines (FSVMs) address class imbalance by assigning varying fuzzy memberships to samples.
The recently developed slack-factor-based FSVM (SFFSVM) improves traditional FSVMs by using slack factors to adjust fuzzy memberships based on misclassification likelihood.
We propose an improved slack-factor-based FSVM (ISFFSVM) that introduces a novel location parameter.
arXiv Detail & Related papers (2024-11-26T05:47:01Z) - Energy Score-based Pseudo-Label Filtering and Adaptive Loss for Imbalanced Semi-supervised SAR target recognition [1.2035771704626825]
Existing semi-supervised SAR ATR algorithms show low recognition accuracy in the case of class imbalance.
This work offers a non-balanced semi-supervised SAR target recognition approach using dynamic energy scores and adaptive loss.
arXiv Detail & Related papers (2024-11-06T14:45:16Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Graph Embedded Intuitionistic Fuzzy Random Vector Functional Link Neural
Network for Class Imbalance Learning [4.069144210024564]
We propose a graph embedded intuitionistic fuzzy RVFL for class imbalance learning (GE-IFRVFL-CIL) model incorporating a weighting mechanism to handle imbalanced datasets.
The proposed GE-IFRVFL-CIL model offers a promising solution to address the class imbalance issue, mitigates the detrimental effect of noise and outliers, and preserves the inherent geometrical structures of the dataset.
arXiv Detail & Related papers (2023-07-15T20:45:45Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
Label distribution skew induced data heterogeniety has been shown to be a significant obstacle that limits the model performance in federated learning.
We propose a simple yet effective framework by introducing a prior-calibrated softmax function for computing the cross-entropy loss.
The improved model performance over existing baselines in the presence of non-IID data and client dropout is demonstrated.
arXiv Detail & Related papers (2023-03-11T05:17:59Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Diversity Enhanced Active Learning with Strictly Proper Scoring Rules [4.81450893955064]
We study acquisition functions for active learning (AL) for text classification.
We convert the Expected Loss Reduction (ELR) method to estimate the increase in (strictly proper) scores like log probability or negative mean square error.
We show that the use of mean square error and log probability with BEMPS yields robust acquisition functions.
arXiv Detail & Related papers (2021-10-27T05:02:11Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Data Augmentation Imbalance For Imbalanced Attribute Classification [60.71438625139922]
We propose a new re-sampling algorithm called: data augmentation imbalance (DAI) to explicitly enhance the ability to discriminate the fewer attributes.
Our DAI algorithm achieves state-of-the-art results, based on pedestrian attribute datasets.
arXiv Detail & Related papers (2020-04-19T20:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.