論文の概要: Sequential Change Point Detection via Denoising Score Matching
- arxiv url: http://arxiv.org/abs/2501.12667v1
- Date: Wed, 22 Jan 2025 06:04:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:34.720360
- Title: Sequential Change Point Detection via Denoising Score Matching
- Title(参考訳): Denoising Score Matchingによる逐次変化点検出
- Authors: Wenbin Zhou, Liyan Xie, Zhigang Peng, Shixiang Zhu,
- Abstract要約: 本稿では,データ分布のスコア関数をノイズ注入により推定するスコアベースCUSUM変化点検出法を提案する。
2つの合成データセットと実世界の地震前兆検出タスクの数値実験により,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 8.22915954499148
- License:
- Abstract: Sequential change-point detection plays a critical role in numerous real-world applications, where timely identification of distributional shifts can greatly mitigate adverse outcomes. Classical methods commonly rely on parametric density assumptions of pre- and post-change distributions, limiting their effectiveness for high-dimensional, complex data streams. This paper proposes a score-based CUSUM change-point detection, in which the score functions of the data distribution are estimated by injecting noise and applying denoising score matching. We consider both offline and online versions of score estimation. Through theoretical analysis, we demonstrate that denoising score matching can enhance detection power by effectively controlling the injected noise scale. Finally, we validate the practical efficacy of our method through numerical experiments on two synthetic datasets and a real-world earthquake precursor detection task, demonstrating its effectiveness in challenging scenarios.
- Abstract(参考訳): 逐次的変化点検出は、分散シフトのタイムリーな識別が悪影響を大幅に軽減する多くの実世界の応用において重要な役割を担っている。
古典的な方法は通常、前と後の変化分布のパラメトリック密度の仮定に頼り、高次元の複雑なデータストリームの有効性を制限している。
本稿では,ノイズを注入し,雑音を除去することにより,データ分布のスコア関数を推定するスコアベースCUSUM変化点検出法を提案する。
オフライン版とオンライン版の両方のスコア推定について検討する。
理論的解析により,入射音尺度を効果的に制御することにより,雑音の一致が検出力を高めることを示した。
最後に,2つの合成データセットと実世界の地震前兆検出タスクを用いて数値実験を行い,本手法の有効性を実証した。
関連論文リスト
- Large Language Model Enhanced Hard Sample Identification for Denoising Recommendation [4.297249011611168]
暗黙のフィードバックは、しばしばレコメンデーションシステムを構築するために使われる。
従来の研究では、分散したパターンに基づいてノイズの多いサンプルを識別することで、これを緩和しようと試みてきた。
大規模言語モデル強化型ハードサンプルデノゲーションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-16T14:57:09Z) - Reproduction of scan B-statistic for kernel change-point detection algorithm [10.49860279555873]
変化点検出は、幅広い応用のために大きな注目を集めている。
本稿では,カーネルベースの効率的なスキャンB統計に基づくオンライン変更点検出アルゴリズムを最近提案した。
数値実験により, 走査型B統計が常に優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-08-23T15:12:31Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Automatic Change-Point Detection in Time Series via Deep Learning [8.43086628139493]
ニューラルネットワークのトレーニングに基づいて,新しいオフライン検出手法を自動生成する方法を示す。
本稿では,そのような手法の誤差率を定量化する理論について述べる。
また,加速度計データに基づく活動変化の検出と位置推定にも強い効果が得られた。
論文 参考訳(メタデータ) (2022-11-07T20:59:14Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
本稿では,TracInに基づく異常をフラグする新しい手法を提案する。
本研究では,変分オートエンコーダを用いて,テストポイントにおけるトレーニングポイントのサブサンプルの平均的な影響が,異常のプロキシとして有効であることを示す。
論文 参考訳(メタデータ) (2022-05-03T08:20:15Z) - Investigation of Different Calibration Methods for Deep Speaker
Embedding based Verification Systems [66.61691401921296]
本稿では, ディープスピーカ埋込抽出器のスコアキャリブレーション法について検討する。
この研究のさらなる焦点は、スコア正規化がシステムの校正性能に与える影響を推定することである。
論文 参考訳(メタデータ) (2022-03-28T21:22:22Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
観測データセットからの因果推論は、しばしば共変量の測定と調整に依存する。
このロバストな最適化手法により、広範囲な因果調整法を拡張し、部分的同定を行うことができることを示す。
合成および実データセット全体で、このアプローチは既存の手法よりも高いカバレッジ確率でATEバウンダリを提供する。
論文 参考訳(メタデータ) (2022-02-22T04:24:26Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
本稿では,雑音遷移行列を推定し,同時に分類器を学習する理論的基礎付け手法を提案する。
提案手法の有効性を,ベンチマークおよび実世界のデータセットを用いた実験により示す。
論文 参考訳(メタデータ) (2021-02-04T05:09:18Z) - Partially Observable Online Change Detection via Smooth-Sparse
Decomposition [16.8028358824706]
本研究は,センサ容量の制限により,各センシング時点におけるデータストリームのサブセットのみを観測できる,疎度な変化を伴う高次元データストリームのオンライン変化検出について考察する。
一方、検出方式は、部分的に観測可能なデータを扱うことができ、一方、スパース変化に対する効率的な検出能力を有するべきである。
本稿では,CDSSDと呼ばれる新しい検出手法を提案する。特にスムーズな分解によるスムーズな変化を伴う高次元データの構造について述べる。
論文 参考訳(メタデータ) (2020-09-22T16:03:04Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。