論文の概要: GAMED-Snake: Gradient-aware Adaptive Momentum Evolution Deep Snake Model for Multi-organ Segmentation
- arxiv url: http://arxiv.org/abs/2501.12844v1
- Date: Wed, 22 Jan 2025 12:45:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:29.055052
- Title: GAMED-Snake: Gradient-aware Adaptive Momentum Evolution Deep Snake Model for Multi-organ Segmentation
- Title(参考訳): GAMED-Snake:多臓器分割のためのグラディエント対応モーメントム進化ディープスネークモデル
- Authors: Ruicheng Zhang, Haowei Guo, Zeyu Zhang, Puxin Yan, Shen Zhao,
- Abstract要約: 本稿では,GAMED-Snakeモデルについて述べる。
勾配に基づく学習と適応運動量進化機構を統合する。
GAMED-Snakeは、最先端の手法と比較してmDiceメトリックを約2%改善する。
- 参考スコア(独自算出の注目度): 4.344584823432849
- License:
- Abstract: Multi-organ segmentation is a critical yet challenging task due to complex anatomical backgrounds, blurred boundaries, and diverse morphologies. This study introduces the Gradient-aware Adaptive Momentum Evolution Deep Snake (GAMED-Snake) model, which establishes a novel paradigm for contour-based segmentation by integrating gradient-based learning with adaptive momentum evolution mechanisms. The GAMED-Snake model incorporates three major innovations: First, the Distance Energy Map Prior (DEMP) generates a pixel-level force field that effectively attracts contour points towards the true boundaries, even in scenarios with complex backgrounds and blurred edges. Second, the Differential Convolution Inception Module (DCIM) precisely extracts comprehensive energy gradients, significantly enhancing segmentation accuracy. Third, the Adaptive Momentum Evolution Mechanism (AMEM) employs cross-attention to establish dynamic features across different iterations of evolution, enabling precise boundary alignment for diverse morphologies. Experimental results on four challenging multi-organ segmentation datasets demonstrate that GAMED-Snake improves the mDice metric by approximately 2% compared to state-of-the-art methods. Code will be available at https://github.com/SYSUzrc/GAMED-Snake.
- Abstract(参考訳): 複雑な解剖学的背景、ぼやけた境界、多様な形態が原因で、マルチ組織セグメンテーションは重要な課題である。
本研究では、勾配に基づく学習と適応運動量進化機構を統合することにより、輪郭型セグメンテーションの新たなパラダイムを確立するグラディエント対応モーメント進化深層スネーク(GAMED-Snake)モデルを提案する。
GAMED-Snakeモデルは3つの大きな革新を取り入れている: まず、距離エネルギーマップ事前(DEMP)はピクセルレベルの力場を生成し、複雑な背景とぼやけたエッジを持つシナリオであっても、輪郭点を真の境界に向かって効果的に惹きつける。
第2に、差分畳み込み開始モジュール(DCIM)は包括的エネルギー勾配を正確に抽出し、セグメンテーション精度を大幅に向上させる。
第3に、アダプティブモーメント進化機構(AMEM)は、様々な進化の反復にまたがる動的な特徴を確立するためにクロスアテンションを用いており、多様な形態の正確な境界アライメントを可能にしている。
GAMED-Snakeは、最先端の手法と比較して、mDiceの指標を約2%改善することを示した。
コードはhttps://github.com/SYSUzrc/GAMED-Snake.comで入手できる。
関連論文リスト
- Decomposing the Neurons: Activation Sparsity via Mixture of Experts for Continual Test Time Adaptation [37.79819260918366]
継続的なテスト時間適応(CTTA)は、トレーニング済みのモデルを進化し続けるターゲットドメインに適応させることを目的としている。
我々はCTTAタスクのアダプタとしてMixture-of-Activation-Sparsity-Experts (MoASE)の統合について検討する。
論文 参考訳(メタデータ) (2024-05-26T08:51:39Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
外科手術のシーングラフ生成(SGG)は、手術室(OR)におけるホモロジー認知知能の増強に不可欠である
これまでの研究は主に多段階学習に依存しており、生成したセマンティックシーングラフはポーズ推定とオブジェクト検出を伴う中間プロセスに依存している。
本研究では,S2Former-OR(S2Former-OR)と呼ばれるORにおけるSGGのための新しいシングルステージバイモーダルトランスフォーマフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T11:40:49Z) - SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
テクスチャレス領域の3次元再構成における課題を解決するために,多視点ステレオ (SD-MVS) を導入する。
私たちは、シーン内のセグメンテーションインスタンスを区別するためにSAM(Segment Anything Model)を採用した最初の人です。
球面座標と正規点の勾配勾配と深度の画素方向探索間隔を組み合わせた独自の精細化戦略を提案する。
論文 参考訳(メタデータ) (2024-01-12T05:25:57Z) - Unsupervised Multimodal Surface Registration with Geometric Deep
Learning [3.3403308469369577]
GeoMorphは、皮質表面の画像登録用に設計された新しい幾何学的深層学習フレームワークである。
よりスムーズな変形によるアライメントの改善により,GeoMorphは既存のディープラーニング手法よりも優れていることを示す。
このような汎用性と堅牢性は、様々な神経科学応用に強い可能性を示唆している。
論文 参考訳(メタデータ) (2023-11-21T22:05:00Z) - Learning Modulated Transformation in GANs [69.95217723100413]
生成逆数ネットワーク(GAN)のジェネレータに、変調変換モジュール(Modulated transformation module, MTM)と呼ばれるプラグアンドプレイモジュールを装備する。
MTMは、可変位置で畳み込み操作を適用可能な潜在符号の制御下で空間オフセットを予測する。
挑戦的なTaiChiデータセット上での人為的な生成に向けて、StyleGAN3のFIDを21.36から13.60に改善し、変調幾何変換の学習の有効性を実証した。
論文 参考訳(メタデータ) (2023-08-29T17:51:22Z) - Multi-stage Factorized Spatio-Temporal Representation for RGB-D Action
and Gesture Recognition [30.975823858419965]
我々は、RGB-Dアクションとジェスチャー認識のためのMFST(Multi-stage Factorized-Trans)と呼ばれる革新的なアーキテクチャを提案する。
MFSTモデルは、3次元差分コンステム(CDC-Stem)モジュールと複数の分解時間段階から構成される。
論文 参考訳(メタデータ) (2023-08-23T08:49:43Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
骨格に基づく行動分類のための新しい多言語時空間グラフネットワークを提案する。
2つの枝の枝からなるデュアルヘッドグラフネットワークを開発し、少なくとも2つの時間分解能を抽出する。
3つの大規模データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-08-10T09:25:07Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。