論文の概要: Efficient simulation of parametrized quantum circuits under non-unital noise through Pauli backpropagation
- arxiv url: http://arxiv.org/abs/2501.13050v1
- Date: Wed, 22 Jan 2025 17:58:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:28:00.987258
- Title: Efficient simulation of parametrized quantum circuits under non-unital noise through Pauli backpropagation
- Title(参考訳): パウリバックプロパゲーションによる非単位雑音下でのパラメトリゼーション量子回路の効率的なシミュレーション
- Authors: Victor Martinez, Armando Angrisani, Ekaterina Pankovets, Omar Fawzi, Daniel Stilck França,
- Abstract要約: パウリのバックプロパゲーションアルゴリズムは、パラメータ化量子回路の特定のクラスを効率的にシミュレートする能力をすでに実証している。
ここでは、パウリのバックプロパゲーションを非単位雑音に適応させることにより、このギャップを埋める。
- 参考スコア(独自算出の注目度): 4.903915603499684
- License:
- Abstract: As quantum devices continue to grow in size but remain affected by noise, it is crucial to determine when and how they can outperform classical computers on practical tasks. A central piece in this effort is to develop the most efficient classical simulation algorithms possible. Among the most promising approaches are Pauli backpropagation algorithms, which have already demonstrated their ability to efficiently simulate certain classes of parameterized quantum circuits-a leading contender for near-term quantum advantage-under random circuit assumptions and depolarizing noise. However, their efficiency was not previously established for more realistic non-unital noise models, such as amplitude damping, that better capture noise on existing hardware. Here, we close this gap by adapting Pauli backpropagation to non-unital noise, proving that it remains efficient even under these more challenging conditions. Our proof leverages a refined combinatorial analysis to handle the complexities introduced by non-unital channels, thus strengthening Pauli backpropagation as a powerful tool for simulating near-term quantum devices.
- Abstract(参考訳): 量子デバイスのサイズは拡大するがノイズの影響を受け続けるため、いつ、どのように古典的コンピュータを実用的タスクで上回るかを判断することが不可欠である。
この取り組みの中心は、可能な限り効率的な古典シミュレーションアルゴリズムを開発することである。
最も有望なアプローチとしては、パウリのバックプロパゲーションアルゴリズム(英語版)があり、これはパラメータ化量子回路の特定のクラスを効率的にシミュレートできることをすでに証明している。
しかし、その効率性は、既存のハードウェアのノイズを捕えるために振幅減衰のようなより現実的な非単体ノイズモデルのために以前は確立されていなかった。
ここでは、パウリのバックプロパゲーションを非単位雑音に適応させることにより、このギャップを埋め、より困難な条件の下でも効率的であることを証明する。
本証明では, 近距離量子デバイスをシミュレーションするための強力なツールとして, パウリのバックプロパゲーションを強化した。
関連論文リスト
- Optimal Quantum Purity Amplification [2.05170973574812]
量子純度増幅(QPA)は、量子状態の劣化に対処する新しいアプローチを提供する。
本稿では,大域的偏極雑音に対する一般量子システムに対する最適QPAプロトコルを提案する。
この結果から,QPAは量子情報処理タスクの性能を向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-26T17:46:00Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Noise-induced shallow circuits and absence of barren plateaus [2.5295633594332334]
雑音がほとんどの量子回路を効果的に対数深度に切り離すことを示す。
次に,非単位雑音下での量子回路は,局所可観測物からなるコスト関数に対するバレンプラトーの欠如を証明した。
論文 参考訳(メタデータ) (2024-03-20T19:00:49Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
我々は、ノイズとノイズレスの両体制において、標準NISQ提案の極めて厳密な境界を得る。
境界は、QAOAのような両方の回路モデルアルゴリズムと、量子アニールのような連続時間アルゴリズムの性能を制限する。
論文 参考訳(メタデータ) (2022-04-07T13:58:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
我々はQuTiPの量子情報処理パッケージであるqutip-qipに新しいツールを導入する。
これらのツールはパルスレベルで量子回路をシミュレートし、QuTiPの量子力学解法と制御最適化機能を活用する。
シミュレーションプロセッサ上で量子回路がどのようにコンパイルされ、制御パルスがターゲットハミルトニアンに作用するかを示す。
論文 参考訳(メタデータ) (2021-05-20T17:06:52Z) - Comparative Study of Sampling-Based Simulation Costs of Noisy Quantum
Circuits [0.8206877486958002]
我々は、2つの主要な量子スキームのシミュレーションコスト、マジック状態の安定化状態サンプリングとハイゼンベルク伝播を特徴付ける。
その結果, 低騒音下では, 安定した状態サンプリングはサンプリングコストが小さくなり, ハイゼンベルク伝搬は高騒音下では良好であることがわかった。
論文 参考訳(メタデータ) (2020-11-12T07:12:47Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。