論文の概要: Exploring the Technology Landscape through Topic Modeling, Expert Involvement, and Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.13252v2
- Date: Thu, 13 Feb 2025 02:40:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:46:27.152742
- Title: Exploring the Technology Landscape through Topic Modeling, Expert Involvement, and Reinforcement Learning
- Title(参考訳): トピックモデリング,エキスパート参加,強化学習による技術景観の探索
- Authors: Ali Nazari, Michael Weiss,
- Abstract要約: 本研究では、トピックモデリング、エキスパート知識入力、強化学習(RL)を組み合わせて、技術的変化の検出を強化する手法を提案する。
結果は、専門家の入力と一致する傾向を特定し、ランク付けし、追跡する手法の有効性を示す。
- 参考スコア(独自算出の注目度): 0.48342038441006807
- License:
- Abstract: In today's rapidly evolving technological landscape, organizations face the challenge of integrating external insights into their decision-making processes to stay competitive. To address this issue, this study proposes a method that combines topic modeling, expert knowledge inputs, and reinforcement learning (RL) to enhance the detection of technological changes. The method has four main steps: (1) Build a relevant topic model, starting with textual data like documents and reports to find key themes. (2) Create aspect-based topic models. Experts use curated keywords to build models that showcase key domain-specific aspects. (3) Iterative analysis and RL driven refinement: We examine metrics such as topic magnitude, similarity, entropy shifts, and how models change over time. We optimize topic selection with RL. Our reward function balances the diversity and similarity of the topics. (4) Synthesis and operational integration: Each iteration provides insights. In the final phase, the experts check these insights and reach new conclusions. These conclusions are designed for use in the firm's operational processes. The application is tested by forecasting trends in quantum communication. Results demonstrate the method's effectiveness in identifying, ranking, and tracking trends that align with expert input, providing a robust tool for exploring evolving technological landscapes. This research offers a scalable and adaptive solution for organizations to make informed strategic decisions in dynamic environments.
- Abstract(参考訳): 今日の急速に進化する技術的状況の中で、組織は、意思決定プロセスに外部の洞察を統合することで競争力を維持するという課題に直面しています。
そこで本研究では,トピックモデリング,エキスパート知識入力,強化学習(RL)を組み合わせた技術変化検出手法を提案する。
1)関連トピックモデルを構築し、文書やレポートなどのテキストデータから始めてキーテーマを見つける。
(2)アスペクトベースのトピックモデルを作成する。
専門家は、重要なドメイン固有の側面を示すモデルを構築するために、キュレートされたキーワードを使用する。
(3)反復分析とRLによる改善:話題の大きさ、類似性、エントロピーシフト、時間とともにモデルがどのように変化するかなどについて検討する。
トピック選択をRLで最適化する。
報酬関数はトピックの多様性と類似性のバランスをとります。
(4) 合成と運用の統合: 各イテレーションは洞察を提供する。
最終フェーズでは、専門家がこれらの洞察を確認して、新たな結論に達する。
これらの結論は、会社の運用プロセスでの使用のために設計されている。
このアプリケーションは、量子通信のトレンドを予測することによってテストされる。
結果は、専門家の入力と整合したトレンドを特定し、ランク付けし、追跡する手法の有効性を示し、進化する技術景観を探索するための堅牢なツールを提供する。
この研究は、組織が動的環境において戦略的決定を下すためのスケーラブルで適応的なソリューションを提供する。
関連論文リスト
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - WISDOM: An AI-powered framework for emerging research detection using weak signal analysis and advanced topic modeling [1.8434042562191815]
我々は、新たな研究テーマを検出するために、WISDOMと呼ばれる自動化人工知能対応フレームワークを提案する。
WISDOMは、高度なトピックモデリングと弱い信号分析を用いて、新たな研究テーマを検出する。
水中センシング技術の分野において,WISDOMによる研究の進展と動向の把握における性能の評価を行った。
論文 参考訳(メタデータ) (2024-09-09T18:08:08Z) - Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
大きな言語モデル(LLM)は、非常に強力な能力を示す。
成功するための重要な要因の1つは、LLMの出力を人間の好みに合わせることである。
選好学習のすべての戦略を、モデル、データ、フィードバック、アルゴリズムの4つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-09-04T15:11:55Z) - A Systematic Review of Business Process Improvement: Achievements and Potentials in Combining Concepts from Operations Research and Business Process Management [0.0]
ビジネスプロセスマネジメントと運用リサーチは、組織における価値創造を強化することを目的としています。
この体系的な文献レビューは、両方の分野から組み合わせた概念を用いた作品を特定し分析する。
その結果,資源配分とスケジューリングの問題に強い焦点が当てられている。
論文 参考訳(メタデータ) (2024-09-02T14:13:14Z) - Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry [1.1060425537315088]
デジタルツイン(Digital Twins、DT)は、センサーデータと高度なデータベースまたは物理ベースのモデル、あるいはその組み合わせを組み合わせた物理製造システムの仮想レプリカで、プロセス監視、予測制御、意思決定支援など、さまざまな産業関連タスクに対処する。
DTのバックボーン、すなわち、これらのモデルをサポートする具体的なモデリング方法論とアーキテクチャフレームワークは、複雑で多様性があり、急速に進化し、最新の最先端の手法と競争の激しい市場のトップに留まる傾向を徹底的に理解する必要がある。
論文 参考訳(メタデータ) (2024-07-02T14:05:10Z) - Transformers and Language Models in Form Understanding: A Comprehensive
Review of Scanned Document Analysis [16.86139440201837]
我々は、スキャンされた文書の文脈におけるフォーム理解のトピックに焦点を当てる。
我々の研究手法は、人気文書の詳細な分析と過去10年間のトレンドの理解の形式に関するものである。
我々は、トランスフォーマーがいかにフィールドを前進させ、フォームアンダード技術に革命をもたらしたかを紹介する。
論文 参考訳(メタデータ) (2024-03-06T22:22:02Z) - Theme and Topic: How Qualitative Research and Topic Modeling Can Be
Brought Together [5.862480696321741]
確率論的トピックモデリングは、テキストの分析にもとづく機械学習アプローチである。
このアナロジーをテーマとトピックシステムの基盤として利用しています。
これは、対話型機械学習システムの設計における、より一般的なアプローチの例である。
論文 参考訳(メタデータ) (2022-10-03T04:21:08Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
異なる地域に数百の仮想エージェントを配置した8つの検索エンジンの実験を行った。
複数のデータ収集にまたがる研究インフラの性能を実証する。
仮想エージェントは,アルゴリズムの性能を長時間にわたって監視するための,有望な場所である,と結論付けている。
論文 参考訳(メタデータ) (2021-06-10T15:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。